-
1
-
-
33644655555
-
How attrition impacts the internal and external validity of longitudinal research
-
Barry AE. How attrition impacts the internal and external validity of longitudinal research. J Sch Health. 2005;75(7):267-270.
-
(2005)
J Sch Health
, vol.75
, Issue.7
, pp. 267-270
-
-
Barry, A.E.1
-
8
-
-
0001131357
-
Missing data: A review of the literature
-
Rossi PH, Wright JD, Anderson AB, eds, San Diego, CA: Academic Press;
-
Anderson AB, Basilevsky A, Hum DPJ. Missing data: A review of the literature. In: Rossi PH, Wright JD, Anderson AB, eds. Handbook of Survey Research. San Diego, CA: Academic Press; 1983:415-494.
-
(1983)
Handbook of Survey Research
, pp. 415-494
-
-
Anderson, A.B.1
Basilevsky, A.2
Hum, D.P.J.3
-
9
-
-
0002914202
-
Full information estimation in the presence of incomplete data
-
Marcoulides GA, Schumacker RE, eds, Mahwah, NJ: Lawrence Erlbaum Associates;
-
Arbuckle JL. Full information estimation in the presence of incomplete data. In: Marcoulides GA, Schumacker RE, eds. Advanced Structural Equation Modeling: Issues and Techniques. Mahwah, NJ: Lawrence Erlbaum Associates; 1996:243-277.
-
(1996)
Advanced Structural Equation Modeling: Issues and Techniques
, pp. 243-277
-
-
Arbuckle, J.L.1
-
10
-
-
38749150772
-
-
Graham JW, Cumsille PE, Elek-Fisk E. Methods for handling missing data. In: Schinka JA, Velicer WF, eds. Handbook of Psychology. 2: Research Methods In Psychology. Hoboken, NJ: Wlley & Sons, Inc.; 2003:87-114.
-
Graham JW, Cumsille PE, Elek-Fisk E. Methods for handling missing data. In: Schinka JA, Velicer WF, eds. Handbook of Psychology. Vol 2: Research Methods In Psychology. Hoboken, NJ: Wlley & Sons, Inc.; 2003:87-114.
-
-
-
-
11
-
-
0002746853
-
The analysis of social science data with missing values
-
Fox J, Long JS, eds, Newbuiy Park, CA: Sage;
-
Little RJA, Rubin DB. The analysis of social science data with missing values. In: Fox J, Long JS, eds. Modern Methods of Data Analysis. Newbuiy Park, CA: Sage; 1990.
-
(1990)
Modern Methods of Data Analysis
-
-
Little, R.J.A.1
Rubin, D.B.2
-
13
-
-
38749106354
-
-
Wothke W. Longitudinal and multigroup modeling with missing data. In: Little TD, Schnabel KU, eds. Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples. Mahwah, NJ: Lawrence Erlbaum Associates; 2000:219-240,269-281.
-
Wothke W. Longitudinal and multigroup modeling with missing data. In: Little TD, Schnabel KU, eds. Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples. Mahwah, NJ: Lawrence Erlbaum Associates; 2000:219-240,269-281.
-
-
-
-
14
-
-
0036214247
-
The case of the missing data: Methods of dealing with dropouts and other research vagaries
-
Streiner DL. The case of the missing data: Methods of dealing with dropouts and other research vagaries. Can J Psychiatry. 2002;47(1):68-75.
-
(2002)
Can J Psychiatry
, vol.47
, Issue.1
, pp. 68-75
-
-
Streiner, D.L.1
-
15
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer JL, Graham JW. Missing data: Our view of the state of the art. Psychol Methods. 2002;7(2):147-177.
-
(2002)
Psychol Methods
, vol.7
, Issue.2
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
16
-
-
84950452119
-
Modeling the drop-out mechanism in repeated-measures studies
-
Little RJA. Modeling the drop-out mechanism in repeated-measures studies. J Am Stat Assoc. 1995;90(431):1112-1121.
-
(1995)
J Am Stat Assoc
, vol.90
, Issue.431
, pp. 1112-1121
-
-
Little, R.J.A.1
-
19
-
-
0030343462
-
Distinguishing 'missing at random' and 'missing completely at random'
-
Heitjan DF, Basu S. Distinguishing 'missing at random' and 'missing completely at random'. Am Stat. 1996;50:207-213.
-
(1996)
Am Stat
, vol.50
, pp. 207-213
-
-
Heitjan, D.F.1
Basu, S.2
-
20
-
-
33749522585
-
Methodological techniques for dealing with missing data
-
O'Rourke TW. Methodological techniques for dealing with missing data. American Journal of Health Studies. 2003; 18(2/3):165-168.
-
(2003)
American Journal of Health Studies
, vol.18
, Issue.2-3
, pp. 165-168
-
-
O'Rourke, T.W.1
-
21
-
-
3042534442
-
A review of the methods for missing data
-
Pigott TD. A review of the methods for missing data. Educational Research and Evaluation. 2001;7(4):353-383.
-
(2001)
Educational Research and Evaluation
, vol.7
, Issue.4
, pp. 353-383
-
-
Pigott, T.D.1
-
23
-
-
84876123313
-
A review of the literature on missing data
-
Paper presented at the, Bowling Green, KY;, November, ERIC Document Reproduction Service No. ED 448 174
-
Tanguma J. A review of the literature on missing data. Paper presented at the annual meeting of the Mid-South Educational Research Association. Bowling Green, KY; 2000, November. (ERIC Document Reproduction Service No. ED 448 174).
-
(2000)
annual meeting of the Mid-South Educational Research Association
-
-
Tanguma, J.1
-
24
-
-
0036479629
-
Multiple imputation for missing data
-
Patrician PA. Multiple imputation for missing data. Res Nurs Health. 2002;25:76-84.
-
(2002)
Res Nurs Health
, vol.25
, pp. 76-84
-
-
Patrician, P.A.1
-
26
-
-
0032954507
-
Applications of multiple imputation in medical studies: From AIDS to NHANES
-
Barnard J, Meng X. Applications of multiple imputation in medical studies: From AIDS to NHANES. Stat Methods Med Res. 1999;8:17-36.
-
(1999)
Stat Methods Med Res
, vol.8
, pp. 17-36
-
-
Barnard, J.1
Meng, X.2
-
27
-
-
0012328128
-
-
On-line, Available at:, Accessed September 21, 2006
-
Schafer JL. Software for multiple imputation (On-line). Available at: http://www.stat.psu.edu/∼jls/misoftwa.htm#top. Accessed September 21, 2006.
-
Software for multiple imputation
-
-
Schafer, J.L.1
-
28
-
-
0032219074
-
Multiple Imputation for multivariate missing-data problems: A data analyst's perspective
-
Schafer JL, Olsen MK. Multiple Imputation for multivariate missing-data problems: a data analyst's perspective. Multivariate Behav Res. 1998;33:545-571.
-
(1998)
Multivariate Behav Res
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
29
-
-
22944486330
-
Multiple imputation for missing ordinal data
-
Chen L, Toma-Drane M, Valois RF, Drane JW. Multiple imputation for missing ordinal data. J Mod Appl Stat Methods. 2005;4(1):288-299.
-
(2005)
J Mod Appl Stat Methods
, vol.4
, Issue.1
, pp. 288-299
-
-
Chen, L.1
Toma-Drane, M.2
Valois, R.F.3
Drane, J.W.4
-
30
-
-
74549136949
-
Imputation strategies for sexual orientation using SAS PROC MI
-
Paper presented at:, San Diego, CA On-line, Accessed January 17, 2007
-
Canchola JA, Neilands TB, Catania JA. Imputation strategies for sexual orientation using SAS PROC MI. Paper presented at: The Tenth Annual Western Users of SAS Software Conference, 2002; San Diego, CA (On-line), http://www.hsrg.net/download.htm. Accessed January 17, 2007.
-
(2002)
The Tenth Annual Western Users of SAS Software Conference
-
-
Canchola, J.A.1
Neilands, T.B.2
Catania, J.A.3
-
31
-
-
0002543932
-
A primer on maximum likelihood algorithms available for use with missing data
-
Enders CK. A primer on maximum likelihood algorithms available for use with missing data. Structural Equation Modeling. 2001;8(1):128-141.
-
(2001)
Structural Equation Modeling
, vol.8
, Issue.1
, pp. 128-141
-
-
Enders, C.K.1
-
32
-
-
33845481227
-
Structural equation modeling: A primer for health behavior researchers
-
Buhi ER Goodson P, Neilands TB. Structural equation modeling: a primer for health behavior researchers. Am J Health Behav. 2007;31(1):74-85.
-
(2007)
Am J Health Behav
, vol.31
, Issue.1
, pp. 74-85
-
-
Buhi, E.R.1
Goodson, P.2
Neilands, T.B.3
-
34
-
-
85050843713
-
Introduction to the special issue
-
Gill J. Introduction to the special issue. Political Analysis. 2004;12:323-337.
-
(2004)
Political Analysis
, vol.12
, pp. 323-337
-
-
Gill, J.1
-
35
-
-
0007287414
-
Estimation and inference are missing data problems: Unifying social science statistics via Bayesian simulation
-
Jackman S. Estimation and inference are missing data problems: Unifying social science statistics via Bayesian simulation. Politi cal Analysis. 2004;12:307-332.
-
(2004)
Politi cal Analysis
, vol.12
, pp. 307-332
-
-
Jackman, S.1
-
37
-
-
0031745550
-
Clinical significance not statistical significance: A simple Bayesian alternative to p values
-
Burton PR, Gurrin LC, Campbell MJ. Clinical significance not statistical significance: a simple Bayesian alternative to p values. J Epidemiol Community Health. 1998;52:318-323.
-
(1998)
J Epidemiol Community Health
, vol.52
, pp. 318-323
-
-
Burton, P.R.1
Gurrin, L.C.2
Campbell, M.J.3
-
38
-
-
0001010853
-
On structural equation modeling with data that are not missing completely at random
-
Muthén B, Kaplan D, Hollis M. On structural equation modeling with data that are not missing completely at random. Psychometrika. 1987;52:431-462.
-
(1987)
Psychometrika
, vol.52
, pp. 431-462
-
-
Muthén, B.1
Kaplan, D.2
Hollis, M.3
-
39
-
-
0035537304
-
The performance of the full information maximum likelihood estimator in multiple regression models with missing data
-
Enders CK. The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educ Psychol Meas. 2001;61(5):713-740.
-
(2001)
Educ Psychol Meas
, vol.61
, Issue.5
, pp. 713-740
-
-
Enders, C.K.1
-
40
-
-
21844483562
-
Missing data: A conceptual review for applied psychologists
-
Roth PL. Missing data: a conceptual review for applied psychologists. Personnel Psychology. 1994;47:537-560.
-
(1994)
Personnel Psychology
, vol.47
, pp. 537-560
-
-
Roth, P.L.1
-
41
-
-
0035324769
-
Reducing missing data in surveys: An overview of methods
-
De Leeuw ED. Reducing missing data in surveys: an overview of methods. Qual Quant. 2001;35:147-160.
-
(2001)
Qual Quant
, vol.35
, pp. 147-160
-
-
De Leeuw, E.D.1
|