-
1
-
-
77955628762
-
Persister cells
-
Lewis K. 2010. Persister cells. Annu Rev Microbiol 6:357-372. http://dx.doi.org/10.1146/annurev.micro.112408.134306.
-
(2010)
Annu Rev Microbiol
, vol.6
, pp. 357-372
-
-
Lewis, K.1
-
2
-
-
33845607284
-
Persister cells, dormancy and infectious disease
-
Lewis K. 2007. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48-56. http://dx.doi.org/10.1038/nrmicro1557.
-
(2007)
Nat Rev Microbiol
, vol.5
, pp. 48-56
-
-
Lewis, K.1
-
3
-
-
79957586352
-
Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies
-
Fauvart M, De Groote VN, Michiels J. 2011. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60:699-709. http://dx.doi.org/10.1099/jmm.0.030932-0.
-
(2011)
J Med Microbiol
, vol.60
, pp. 699-709
-
-
Fauvart, M.1
De Groote, V.N.2
Michiels, J.3
-
4
-
-
4644343922
-
Bacterial persistence as a phenotypic switch
-
Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science 305:1622-1625. http://dx.doi.org/10.1126/science.1099390.
-
(2004)
Science
, vol.305
, pp. 1622-1625
-
-
Balaban, N.Q.1
Merrin, J.2
Chait, R.3
Kowalik, L.4
Leibler, S.5
-
5
-
-
84897948007
-
The role of metabolism in bacterial persistence
-
Amato SM, Fazen CH, Henry TC, Mok WWK, Orman MA, Sandvik EL, Volzing KG, Brynildsen MP. 2014. The role of metabolism in bacterial persistence. Front Microbiol 5:70. http://dx.doi.org/10.3389/fmicb.2014.00070.
-
(2014)
Front Microbiol
, vol.5
, pp. 70
-
-
Amato, S.M.1
Fazen, C.H.2
Henry, T.C.3
Mok, W.W.K.4
Orman, M.A.5
Sandvik, E.L.6
Volzing, K.G.7
Brynildsen, M.P.8
-
6
-
-
84905222366
-
Persistence: A copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics
-
Levin BR, Concepción-Acevedo J, Udekwu KI. 2014. Persistence: a copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Curr Opin Microbiol 21:18-21. http://dx.doi.org/10.1016/j.mib.2014.06.016.
-
(2014)
Curr Opin Microbiol
, vol.21
, pp. 18-21
-
-
Levin, B.R.1
Concepción-Acevedo, J.2
Udekwu, K.I.3
-
7
-
-
84879031775
-
Dormancy is not necessary or sufficient for bacterial persistence
-
Orman MA, Brynildsen MP. 2013. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57:3230-3239. http://dx.doi.org/10.1128/AAC.00243-13.
-
(2013)
Antimicrob Agents Chemother
, vol.57
, pp. 3230-3239
-
-
Orman, M.A.1
Brynildsen, M.P.2
-
8
-
-
84907879368
-
Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations
-
Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ. 2014. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513:418-421. http://dx.doi.org/10.1038/nature13469.
-
(2014)
Nature
, vol.513
, pp. 418-421
-
-
Fridman, O.1
Goldberg, A.2
Ronin, I.3
Shoresh, N.4
Balaban, N.Q.5
-
9
-
-
79955886933
-
Metabolite-enabled eradication of bacterial persisters by aminoglycosides
-
Allison KR, Brynildsen MP, Collins JJ. 2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216-220. http://dx.doi.org/10.1038/nature10069.
-
(2011)
Nature
, vol.473
, pp. 216-220
-
-
Allison, K.R.1
Brynildsen, M.P.2
Collins, J.J.3
-
10
-
-
84882362714
-
Establishment of a method to rapidly assay bacterial persister metabolism
-
Orman MA, Brynildsen MP. 2013. Establishment of a method to rapidly assay bacterial persister metabolism. Antimicrob Agents Chemother 57:4398-4409. http://dx.doi.org/10.1128/AAC.00372-13.
-
(2013)
Antimicrob Agents Chemother
, vol.57
, pp. 4398-4409
-
-
Orman, M.A.1
Brynildsen, M.P.2
-
11
-
-
14544268137
-
Uncovering transcriptional regulation of metabolism by using metabolic network topology
-
Patil KR, Nielsen J. 2005. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci USA 102:2685-2689. http://dx.doi.org/10.1073/pnas.0406811102.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 2685-2689
-
-
Patil, K.R.1
Nielsen, J.2
-
12
-
-
0037440734
-
Evolution of transcription factors and the gene regulatory network in Escherichia coli
-
Madan Babu M, Teichmann SA. 2003. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 31:1234-1244. http://dx.doi.org/10.1093/nar/gkg210.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 1234-1244
-
-
Madan Babu, M.1
Teichmann, S.A.2
-
13
-
-
31544450286
-
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection
-
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008. http://dx.doi.org/10.1038/msb4100050.
-
(2006)
Mol Syst Bio
, vol.2
, pp. 2006.0008
-
-
Baba, T.1
Ara, T.2
Hasegawa, M.3
Takai, Y.4
Okumura, Y.5
Baba, M.6
Datsenko, K.A.7
Tomita, M.8
Wanner, B.L.9
Mori, H.10
-
14
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-6645. http://dx.doi.org/10.1073/pnas.120163297.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
15
-
-
33746415885
-
A comprehensive library of fluorescent transcriptional reporters for Escherichia coli
-
Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U. 2006. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623-628. http://dx.doi.org/10.1038/nmeth895.
-
(2006)
Nat Methods
, vol.3
, pp. 623-628
-
-
Zaslaver, A.1
Bren, A.2
Ronen, M.3
Itzkovitz, S.4
Kikoin, I.5
Shavit, S.6
Liebermeister, W.7
Surette, M.G.8
Alon, U.9
-
16
-
-
0034924241
-
Determination of minimum inhibitory concentrations
-
Andrews JM. 2001. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5-16. http://dx.doi.org/10.1093/jac/48.suppl-1.5.
-
(2001)
J Antimicrob Chemother
, vol.48
, pp. 5-16
-
-
Andrews, J.M.1
-
17
-
-
67649400754
-
cAMP receptor protein from Escherichia coli as a model of signal transduction in proteins - A review
-
Fic E, Bonarek P, Gorecki A, Kedracka-Krok S, Mikolajczak J, Polit A, Tworzydlo M, Dziedzicka-Wasylewska M, Wasylewski Z. 2009. cAMP receptor protein from Escherichia coli as a model of signal transduction in proteins - a review. J Mol Microbiol Biotechnol 17:1-11. http://dx.doi.org/10.1159/000178014.
-
(2009)
J Mol Microbiol Biotechnol
, vol.17
, pp. 1-11
-
-
Fic, E.1
Bonarek, P.2
Gorecki, A.3
Kedracka-Krok, S.4
Mikolajczak, J.5
Polit, A.6
Tworzydlo, M.7
Dziedzicka-Wasylewska, M.8
Wasylewski, Z.9
-
18
-
-
47549110972
-
Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients
-
Gorke B, Stulke J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613-624. http://dx.doi.org/10.1038/nrmicro1932.
-
(2008)
Nat Rev Microbiol
, vol.6
, pp. 613-624
-
-
Gorke, B.1
Stulke, J.2
-
19
-
-
55449084318
-
Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli
-
Sarkar D, Siddiquee K, Araúzo-Bravo M, Oba T, Shimizu K. 2008. Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Arch Microbiol 190:559-571. http://dx.doi.org/10.1007/s00203-008-0406-2.
-
(2008)
Arch Microbiol
, vol.190
, pp. 559-571
-
-
Sarkar, D.1
Siddiquee, K.2
Araúzo-Bravo, M.3
Oba, T.4
Shimizu, K.5
-
21
-
-
84887308033
-
The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally
-
Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ. 2013. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 9:e1003839. http://dx.doi.org/10.1371/journal.pgen.1003839.
-
(2013)
PLoS Genet
, vol.9
-
-
Park, D.M.1
Akhtar, M.S.2
Ansari, A.Z.3
Landick, R.4
Kiley, P.J.5
-
22
-
-
0043032584
-
Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR
-
Salmon K, Hung S-P, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP. 2003. Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem 278:29837-29855. http://dx.doi.org/10.1074/jbc.M213060200.
-
(2003)
J Biol Chem
, vol.278
, pp. 29837-29855
-
-
Salmon, K.1
Hung, S.-P.2
Mekjian, K.3
Baldi, P.4
Hatfield, G.W.5
Gunsalus, R.P.6
-
23
-
-
80053226878
-
The RpoS-mediated general stress response in Escherichia coli
-
Battesti A, Majdalani N, Gottesman S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189-213. http://dx.doi.org/10.1146/annurev-micro-090110-102946.
-
(2011)
Annu Rev Microbiol
, vol.65
, pp. 189-213
-
-
Battesti, A.1
Majdalani, N.2
Gottesman, S.3
-
24
-
-
0036331056
-
DksA affects ppGpp induction of RpoS at a translational level
-
Brown L, Gentry D, Elliott T, Cashel M. 2002. DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 184:4455-4465. http://dx.doi.org/10.1128/JB.184.16.4455-4465.2002.
-
(2002)
J Bacteriol
, vol.184
, pp. 4455-4465
-
-
Brown, L.1
Gentry, D.2
Elliott, T.3
Cashel, M.4
-
25
-
-
0018195032
-
Streptomycin uptake via an inducible polyamine transport system in Escherichia coli
-
Höltje JV. 1978. Streptomycin uptake via an inducible polyamine transport system in Escherichia coli. Eur J Biochem 86:345-351. http://dx.doi.org/10.1111/j.1432-1033.1978.tb12316.x.
-
(1978)
Eur J Biochem
, vol.86
, pp. 345-351
-
-
Höltje, J.V.1
-
26
-
-
0024239039
-
Antibiotic uptake into gram-negative bacteria
-
Hancock R, Bell A. 1988. Antibiotic uptake into gram-negative bacteria. Eur J Clin Microbiol Infect Dis 7:713-720. http://dx.doi.org/10.1007/BF01975036.
-
(1988)
Eur J Clin Microbiol Infect Dis
, vol.7
, pp. 713-720
-
-
Hancock, R.1
Bell, A.2
-
27
-
-
66249098133
-
Genetic architecture of intrinsic antibiotic susceptibility
-
Girgis HS, Hottes AK, Tavazoie S. 2009. Genetic architecture of intrinsic antibiotic susceptibility. PLoS One 4:e5629. http://dx.doi.org/10.1371/journal.pone.0005629.
-
(2009)
PLoS One
, vol.4
-
-
Girgis, H.S.1
Hottes, A.K.2
Tavazoie, S.3
-
28
-
-
84907817912
-
Metabolic aspects of bacterial persisters
-
Prax M, Bertram R. 2014. Metabolic aspects of bacterial persisters. Front Cell Infect Microbiol 4:148. http://dx.doi.org/10.3389/fcimb.2014.00148.
-
(2014)
Front Cell Infect Microbiol
, vol.4
, pp. 148
-
-
Prax, M.1
Bertram, R.2
-
29
-
-
84873500633
-
Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin
-
Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée J-Y, Ghigo J-M, Beloin C. 2013. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9:e1003144. http://dx.doi.org/10.1371/journal.pgen.1003144.
-
(2013)
PLoS Genet
, vol.9
-
-
Bernier, S.P.1
Lebeaux, D.2
DeFrancesco, A.S.3
Valomon, A.4
Soubigou, G.5
Coppée, J.-Y.6
Ghigo, J.-M.7
Beloin, C.8
-
30
-
-
84899731866
-
Nutrient transitions are a source of persisters in Escherichia coli biofilms
-
Amato SM, Brynildsen MP. 2014. Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS One 9:e93110. http://dx.doi.org/10.1371/journal.pone.0093110.
-
(2014)
PLoS One
, vol.9
-
-
Amato, S.M.1
Brynildsen, M.P.2
-
31
-
-
84878204775
-
Metabolic control of persister formation in Escherichia coli
-
Amato SM, Orman MA, Brynildsen MP. 2013. Metabolic control of persister formation in Escherichia coli. Mol Cell 50:475-487. http://dx.doi.org/10.1016/j.molcel.2013.04.002.
-
(2013)
Mol Cell
, vol.50
, pp. 475-487
-
-
Amato, S.M.1
Orman, M.A.2
Brynildsen, M.P.3
-
32
-
-
81555212273
-
Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria
-
Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK. 2011. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334:982-986. http://dx.doi.org/10.1126/science.1211037.
-
(2011)
Science
, vol.334
, pp. 982-986
-
-
Nguyen, D.1
Joshi-Datar, A.2
Lepine, F.3
Bauerle, E.4
Olakanmi, O.5
Beer, K.6
McKay, G.7
Siehnel, R.8
Schafhauser, J.9
Wang, Y.10
Britigan, B.E.11
Singh, P.K.12
-
33
-
-
84864349736
-
Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals
-
Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. 2012. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci U S A 109:12147-12152. http://dx.doi.org/10.1073/pnas.1203735109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 12147-12152
-
-
Grant, S.S.1
Kaufmann, B.B.2
Chand, N.S.3
Haseley, N.4
Hung, D.T.5
-
34
-
-
84864507798
-
Large mutational target size for rapid emergence of bacterial persistence
-
Girgis HS, Harris K, Tavazoie S. 2012. Large mutational target size for rapid emergence of bacterial persistence. Proc Natl Acad Sci U S A 109:12740-12745. http://dx.doi.org/10.1073/pnas.1205124109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 12740-12745
-
-
Girgis, H.S.1
Harris, K.2
Tavazoie, S.3
-
35
-
-
84888019629
-
Activated ClpP kills persisters and eradicates a chronic biofilm infection
-
Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K. 2013. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365-370. http://dx.doi.org/10.1038/nature12790.
-
(2013)
Nature
, vol.503
, pp. 365-370
-
-
Conlon, B.P.1
Nakayasu, E.S.2
Fleck, L.E.3
LaFleur, M.D.4
Isabella, V.M.5
Coleman, K.6
Leonard, S.N.7
Smith, R.D.8
Adkins, J.N.9
Lewis, K.10
-
36
-
-
80054682562
-
Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells
-
Kim JS, Heo P, Yang TJ, Lee KS, Cho DH, Kim BT, Suh JH, Lim HJ, Shin D, Kim SK, Kweon DH. 2011. Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob Agents Chemother 55:5380-5383. http://dx.doi.org/10.1128/AAC.00708-11.
-
(2011)
Antimicrob Agents Chemother
, vol.55
, pp. 5380-5383
-
-
Kim, J.S.1
Heo, P.2
Yang, T.J.3
Lee, K.S.4
Cho, D.H.5
Kim, B.T.6
Suh, J.H.7
Lim, H.J.8
Shin, D.9
Kim, S.K.10
Kweon, D.H.11
-
37
-
-
84866685714
-
Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one
-
Pan J, Bahar AA, Syed H, Ren D. 2012. Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. PLoS One 7:e45778. http://dx.doi.org/10.1371/journal.pone.0045778.
-
(2012)
PLoS One
, vol.7
-
-
Pan, J.1
Bahar, A.A.2
Syed, H.3
Ren, D.4
-
38
-
-
84922041653
-
pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms
-
Lebeaux D, Chauhan A, Létoffé S, Fischer F, de Reuse H, Beloin C, Ghigo JM. 2014. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. J Infect Dis 210:1357-1366. http://dx.doi.org/10.1093/infdis/jiu286.
-
(2014)
J Infect Dis
, vol.210
, pp. 1357-1366
-
-
Lebeaux, D.1
Chauhan, A.2
Létoffé, S.3
Fischer, F.4
De Reuse, H.5
Beloin, C.6
Ghigo, J.M.7
-
39
-
-
79960436674
-
Age of inoculum strongly influences persister frequency and can mask the effects of mutations implicated in altered persistence
-
Luidalepp H, Jõers A, Kaldalu N, Tenson T. 2011. Age of inoculum strongly influences persister frequency and can mask the effects of mutations implicated in altered persistence. J Bacteriol 193:3598-3605. http://dx.doi.org/10.1128/JB.00085-11.
-
(2011)
J Bacteriol
, vol.193
, pp. 3598-3605
-
-
Luidalepp, H.1
Jõers, A.2
Kaldalu, N.3
Tenson, T.4
-
40
-
-
43549091825
-
Cell division in Escherichia coli cultures monitored at single cell resolution
-
Roostalu J, Joers A, Luidalepp H, Kaldalu N, Tenson T. 2008. Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 8:68. http://dx.doi.org/10.1186/1471-2180-8-68.
-
(2008)
BMC Microbiol
, vol.8
, pp. 68
-
-
Roostalu, J.1
Joers, A.2
Luidalepp, H.3
Kaldalu, N.4
Tenson, T.5
-
41
-
-
48749089081
-
Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli
-
Hansen S, Lewis K, Vulic M. 2008. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718-2726. http://dx.doi.org/10.1128/AAC.00144-08.
-
(2008)
Antimicrob Agents Chemother
, vol.52
, pp. 2718-2726
-
-
Hansen, S.1
Lewis, K.2
Vulic, M.3
-
42
-
-
7444245668
-
Identification of the CRP regulon using in vitro and in vivo transcriptional profiling
-
Zheng D, Constantinidou C, Hobman JL, Minchin SD. 2004. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874-5893. http://dx.doi.org/10.1093/nar/gkh908.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 5874-5893
-
-
Zheng, D.1
Constantinidou, C.2
Hobman, J.L.3
Minchin, S.D.4
-
43
-
-
0036267354
-
Catabolite repression of Escherichia coli biofilm formation
-
Jackson DW, Simecka JW, Romeo T. 2002. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406-3410. http://dx.doi.org/10.1128/JB.184.12.3406-3410.2002.
-
(2002)
J Bacteriol
, vol.184
, pp. 3406-3410
-
-
Jackson, D.W.1
Simecka, J.W.2
Romeo, T.3
-
44
-
-
84896468577
-
Cyclic AMP receptor protein regulates cspD, a bacterial toxin gene, in Escherichia coli
-
Uppal S, Shetty DM, Jawali N. 2014. Cyclic AMP receptor protein regulates cspD, a bacterial toxin gene, in Escherichia coli. J Bacteriol 196:1569-1577. http://dx.doi.org/10.1128/JB.01476-13.
-
(2014)
J Bacteriol
, vol.196
, pp. 1569-1577
-
-
Uppal, S.1
Shetty, D.M.2
Jawali, N.3
|