메뉴 건너뛰기




Volumn 29, Issue 8, 2008, Pages 2227-2240

Crop classification by support vector machine with intelligently selected training data for an operational application

Author keywords

[No Author keywords available]

Indexed keywords

AGRICULTURE; CLASSIFICATION (OF INFORMATION); DATABASE SYSTEMS; REMOTE SENSING;

EID: 40349110669     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431160701395203     Document Type: Article
Times cited : (194)

References (33)
  • 1
    • 0031106423 scopus 로고    scopus 로고
    • Log-linear modelling for the evaluation of the variables affecting the accuracy of probabilistic, fuzzy and neural network classifications
    • Arora, M. K. and Foody, G. M. (1997) Log-linear modelling for the evaluation of the variables affecting the accuracy of probabilistic, fuzzy and neural network classifications. International Journal of Remote Sensing, 18, pp. 785-798.
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 785-798
    • Arora, M.K.1    Foody, G.M.2
  • 2
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalisation performance: Support vector machines
    • Belousov, A. I., Verzakov, S. A. and von Frese, J. (2002) A flexible classification approach with optimal generalisation performance: Support vector machines. Chermometrics and Intelligent Laboratory Systems, 64, pp. 15-25.
    • (2002) Chermometrics and Intelligent Laboratory Systems , vol.64 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    von Frese, J.3
  • 3
    • 0024855651 scopus 로고
    • Semi-automated training field extraction and analysis for efficient digital image classification
    • Buchheim, M. P. and Lillesand, T. M. (1989) Semi-automated training field extraction and analysis for efficient digital image classification. Photogrammetric Engineering and Remote Sensing, 55, pp. 1347-1355.
    • (1989) Photogrammetric Engineering and Remote Sensing , vol.55 , pp. 1347-1355
    • Buchheim, M.P.1    Lillesand, T.M.2
  • 5
    • 0036827545 scopus 로고    scopus 로고
    • The effect of training strategies on supervised classification at different spatial resolutions
    • Chen, D. M. and Stow, D. (2002) The effect of training strategies on supervised classification at different spatial resolutions. Photogrammetric Engineering and Remote Sensing, 68, pp. 1155-1161.
    • (2002) Photogrammetric Engineering and Remote Sensing , vol.68 , pp. 1155-1161
    • Chen, D.M.1    Stow, D.2
  • 6
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R. G. (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, pp. 35-46.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 7
    • 0020642209 scopus 로고
    • A quantitative method to test for consistency and correctness in photointerpretation
    • Congalton, R. G. and Mead, R. A. (1983) A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering and Remote Sensing, 49, pp. 69-74.
    • (1983) Photogrammetric Engineering and Remote Sensing , vol.49 , pp. 69-74
    • Congalton, R.G.1    Mead, R.A.2
  • 8
    • 0019173526 scopus 로고
    • Multispectral remote sensing of vegetation amount
    • Curran, P. (1980) Multispectral remote sensing of vegetation amount. Progress in Physical Geography, 4, pp. 315-341.
    • (1980) Progress in Physical Geography , vol.4 , pp. 315-341
    • Curran, P.1
  • 9
    • 0033372875 scopus 로고    scopus 로고
    • The significance of border training patterns in classification by a feedforward neural network using back propagation learning
    • Foody, G. M. (1999) The significance of border training patterns in classification by a feedforward neural network using back propagation learning. International Journal of Remote Sensing, 20, pp. 3549-3562.
    • (1999) International Journal of Remote Sensing , vol.20 , pp. 3549-3562
    • Foody, G.M.1
  • 10
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody, G. M. (2002) Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, pp. 185-201.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 11
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • Foody, G. M. (2004) Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70, pp. 627-633.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 13
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • Foody, G. M. and Arora, M. K. (1997) An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 18, pp. 799-810.
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 14
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machine
    • Foody, G. M. and Mathur, A. (2004) A relative evaluation of multiclass image classification by support vector machine. IEEE Transactions Geoscience Remote Sensing, 42, pp. 1335-1343.
    • (2004) IEEE Transactions Geoscience Remote Sensing , vol.42 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 15
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifiactions: Directing training data acquisition for SVM classification
    • Foody, G. M. and Mathur, A. (2004) Toward intelligent training of supervised image classifiactions: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93, pp. 107-117.
    • (2004) Remote Sensing of Environment , vol.93 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 17
    • 0029473455 scopus 로고
    • The effect of training set size and composition on artificial neural network classification
    • Foody, G. M., McCulloch, M. B. and Yates, W. B. (1995) The effect of training set size and composition on artificial neural network classification. International Journal of Remote Sensing, 16, pp. 1707-1723.
    • (1995) International Journal of Remote Sensing , vol.16 , pp. 1707-1723
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 18
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • Gualtieri, J. A. and Cromp, R. F. (1998) Support vector machines for hyperspectral remote sensing classification. Proceedings SPIE, 3584, pp. 221-232.
    • (1998) Proceedings SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 19
    • 0019229727 scopus 로고
    • Evaluation of several schemes for classification of remotely sensed data
    • Hixson, M., Scholz, D. and Fuhs, N. (1980) Evaluation of several schemes for classification of remotely sensed data. Photogrammetric Engineering and Remote Sensing, 46, pp. 1547-1553.
    • (1980) Photogrammetric Engineering and Remote Sensing , vol.46 , pp. 1547-1553
    • Hixson, M.1    Scholz, D.2    Fuhs, N.3
  • 21
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C. W. and Lin, C. J. (2002) A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13, pp. 415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 23
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Jackson, Q. and Landgrebe, D. A. (2001) An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Transactions on Geoscience and Remote Sensing, 39, pp. 2664-2679.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 25
    • 41549104015 scopus 로고    scopus 로고
    • Land cover classification: Refining training requirements for support vector machine classification using remotely sensed data
    • Mathur, A. (2005) Land cover classification: Refining training requirements for support vector machine classification using remotely sensed data,.
    • (2005)
    • Mathur, A.1
  • 26
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F. and Bruzzone, L. (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions Geoscience Remote Sensing, 42, pp. 1778-1790.
    • (2004) IEEE Transactions Geoscience Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 27
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • Neumann, J., Schnorr, C. and Steidl, G. (2005) Combined SVM-based feature selection and classification. Machine Learning, 61, pp. 129-150.
    • (2005) Machine Learning , vol.61 , pp. 129-150
    • Neumann, J.1    Schnorr, C.2    Steidl, G.3
  • 28
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M. and Mather, P. M. (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86, pp. 554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 29
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal, M. and Mather, P. M. (2004) Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20, pp. 1215-1225.
    • (2004) Future Generation Computer Systems , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 31
    • 0002702567 scopus 로고    scopus 로고
    • Classification algorithms - Where next?
    • World Scientific, Singapore
    • Wilkinson, G. G. (1996) Classification algorithms - where next?. Soft Computing in Remote Sensing Data Analysis, pp. 93-99. World Scientific, Singapore
    • (1996) Soft Computing in Remote Sensing Data Analysis , pp. 93-99
    • Wilkinson, G.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.