메뉴 건너뛰기




Volumn 31, Issue 12, 2015, Pages i171-i180

Exploring the structure and function of temporal networks with dynamic graphlets

Author keywords

[No Author keywords available]

Indexed keywords

AGING; BIOLOGICAL MODEL; GENE EXPRESSION PROFILING; GENETICS; HUMAN; METABOLISM; PROTEIN ANALYSIS;

EID: 84931084189     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv227     Document Type: Conference Paper
Times cited : (115)

References (58)
  • 1
    • 4344715809 scopus 로고    scopus 로고
    • Comment on network motifs: Simple building blocks of complex networks and superfamilies of evolved and designed networks
    • Artzy-Randrup Y., et al. (2004). Comment on Network motifs: simple building blocks of complex networks and Superfamilies of evolved and designed networks. Science, 305, 1107-1107
    • (2004) Science , vol.305 , pp. 1107-1107
    • Artzy-Randrup, Y.1
  • 2
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • Ashburner M., et al. (2000). Gene Ontology: tool for the unification of biology. Nat. Genet., 25, 25-29
    • (2000) Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 3
    • 79956262123 scopus 로고    scopus 로고
    • Dynamical patterns of cattle trade movements
    • Bajardi P., et al. (2011). Dynamical patterns of cattle trade movements. PLoS One, 6, e19869
    • (2011) Plos One , vol.6 , pp. e19869
    • Bajardi, P.1
  • 4
    • 55749105400 scopus 로고    scopus 로고
    • Gene expression changes in the course of normal brain aging are sexually dimorphic
    • Berchtold N.C., et al. (2008). Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl Acad. Sci., 105, 15605-15610
    • (2008) Proc. Natl Acad. Sci , vol.105 , pp. 15605-15610
    • Berchtold, N.C.1
  • 5
    • 69449091040 scopus 로고    scopus 로고
    • Time-dependent complex networks: Dynamic centrality, dynamic motifs, and cycles of social interactions
    • Springer Berlin
    • Braha D. and Bar-Yam Y. (2009). Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Adaptive Networks, Springer, Berlin, pp. 39-50
    • (2009) Adaptive Networks , pp. 39-50
    • Braha, D.1    Bar-Yam, Y.2
  • 6
    • 55749116150 scopus 로고    scopus 로고
    • Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network
    • Chechik G., et al. (2008). Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nat. Biotechnol., 26, 1251-1259
    • (2008) Nat. Biotechnol , vol.26 , pp. 1251-1259
    • Chechik, G.1
  • 7
    • 59049083941 scopus 로고    scopus 로고
    • The human ageing genomic resources: Online databases and tools for biogerontologists
    • de Magalhães J., et al. (2009). The human ageing genomic resources: online databases and tools for biogerontologists. Aging Cell, 8, 65-72
    • (2009) Aging Cell , vol.8 , pp. 65-72
    • De Magalhães, J.1
  • 8
    • 66349132579 scopus 로고    scopus 로고
    • From disease ontology to disease-ontology lite: Statistical methods to adapt a general-purpose ontology for the test of gene-ontology associations
    • Du P., et al. (2009). From disease ontology to disease-ontology lite: statistical methods to adapt a general-purpose ontology for the test of gene-ontology associations. Bioinformatics, 25, 63-68
    • (2009) Bioinformatics , vol.25 , pp. 63-68
    • Du, P.1
  • 9
    • 84902440124 scopus 로고    scopus 로고
    • Dynamic networks reveal key players in aging
    • Faisal F.E. and Milenković, T. (2014). Dynamic networks reveal key players in aging. Bioinformatics, 30, 1721-1729
    • (2014) Bioinformatics , vol.30 , pp. 1721-1729
    • Faisal, F.E.1    Milenković, T.2
  • 10
    • 84888140822 scopus 로고    scopus 로고
    • Global network alignment in the context of aging
    • Faisal F., et al. (2014). Global network alignment in the context of aging. IEEE/ACM Trans. Comput. Biol. Bioinform., 23
    • (2014) IEEE/ACM Trans Comput. Biol. Bioinform , pp. 23
    • Faisal, F.1
  • 11
    • 13844250627 scopus 로고    scopus 로고
    • A more efficient search strategy for aging genes based on connectivity
    • Ferrarini L., et al. (2005). A more efficient search strategy for aging genes based on connectivity. Bioinformatics, 21, 338-348
    • (2005) Bioinformatics , vol.21 , pp. 338-348
    • Ferrarini, L.1
  • 12
    • 77953430024 scopus 로고    scopus 로고
    • Protein interaction network uncovers melanogenesis regulatory network components within functional genomics datasets
    • Ho H., et al. (2010). Protein interaction network uncovers melanogenesis regulatory network components within functional genomics datasets. BMC Syst. Biol., 4, 84
    • (2010) BMC Syst. Biol , vol.4 , pp. 84
    • Ho, H.1
  • 13
    • 84894578126 scopus 로고    scopus 로고
    • A combinatorial approach to graphlet counting
    • Hočevar T. and Demšar J. (2014). A combinatorial approach to graphlet counting. Bioinformatics, 30, 559-565
    • (2014) Bioinformatics , vol.30 , pp. 559-565
    • Hočevar, T.1    Demšar, J.2
  • 14
    • 84866939709 scopus 로고    scopus 로고
    • Temporal networks
    • Holme P. and Saramäki J. (2012). Temporal networks. Phys. Rep., 519, 97-125
    • (2012) Phys. Rep , vol.519 , pp. 97-125
    • Holme, P.1    Saramäki, J.2
  • 15
    • 84896758867 scopus 로고    scopus 로고
    • Finding alignments of conserved graphlets in protein interaction networks
    • Hsieh M.-F. and Sze S.-H. (2014). Finding alignments of conserved graphlets in protein interaction networks. J. Comput. Biol., 21, 234-246
    • (2014) J. Comput. Biol , vol.21 , pp. 234-246
    • Hsieh, M.-F.1    Sze, S.-H.2
  • 16
    • 84920745580 scopus 로고    scopus 로고
    • Network analysis improves interpretation of affective physiological data
    • Hulovatyy Y., et al. (2014a) Network analysis improves interpretation of affective physiological data. J. Complex Netw., 2, 614-636
    • (2014) J. Complex Netw , vol.2 , pp. 614-636
    • Hulovatyy, Y.1
  • 17
    • 84896938179 scopus 로고    scopus 로고
    • Revealing missing parts of the interactome via link prediction
    • Hulovatyy Y., et al. (2014b) Revealing missing parts of the interactome via link prediction. PLoS One, 9, e90073
    • (2014) Plos One , vol.9 , pp. e90073
    • Hulovatyy, Y.1
  • 19
    • 0034280096 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in bipolar disorder
    • Kato T. and Kato N. (2000). Mitochondrial dysfunction in bipolar disorder. Bipolar Disord., 2, 180-190
    • (2000) Bipolar Disord , vol.2 , pp. 180-190
    • Kato, T.1    Kato, N.2
  • 20
    • 82455167146 scopus 로고    scopus 로고
    • Temporal motifs in time-dependent networks
    • Kovanen L., et al. (2011). Temporal motifs in time-dependent networks. J. Stat. Mech.: Theory Exp., 2011, P11005
    • (2011) J. Stat. Mech.: Theory Exp , vol.2011 , pp. P11005
    • Kovanen, L.1
  • 21
    • 84887282279 scopus 로고    scopus 로고
    • Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences
    • Kovanen L., et al. (2013). Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl Acad. Sci., 110, 18070-18075
    • (2013) Proc. Natl Acad. Sci , vol.110 , pp. 18070-18075
    • Kovanen, L.1
  • 23
    • 77956576710 scopus 로고    scopus 로고
    • Topological network alignment uncovers biological function and phylogeny
    • Kuchaiev O., et al. (2010). Topological network alignment uncovers biological function and phylogeny. J. R. Soc. Interface, 7, 1341-1354
    • (2010) J. R. Soc. Interface , vol.7 , pp. 1341-1354
    • Kuchaiev, O.1
  • 24
    • 78651512420 scopus 로고    scopus 로고
    • GraphCrunch 2: Software tool for network modeling, alignment and clustering
    • Kuchaiev O., et al. (2011). GraphCrunch 2: software tool for network modeling, alignment and clustering. BMC Bioinformatics, 12, 24
    • (2011) BMC Bioinformatics , vol.12 , pp. 24
    • Kuchaiev, O.1
  • 27
    • 85009767196 scopus 로고    scopus 로고
    • Generalized graphlet kernels for probabilistic inference in sparse graphs
    • Lugo-Martinez J. and Radivojac P. (2014). Generalized graphlet kernels for probabilistic inference in sparse graphs. Netw. Sci., 2, 254-276
    • (2014) Netw. Sci , vol.2 , pp. 254-276
    • Lugo-Martinez, J.1    Radivojac, P.2
  • 28
    • 84899535286 scopus 로고    scopus 로고
    • GR-Align: Fast and flexible alignment of protein 3D structures using graphlet degree similarity
    • Malod-Dognin N. and Pržulj N. (2014). GR-Align: fast and flexible alignment of protein 3D structures using graphlet degree similarity. Bioinformatics, 30, 1259-1265
    • (2014) Bioinformatics , vol.30 , pp. 1259-1265
    • Malod-Dognin, N.1    Pržulj, N.2
  • 29
    • 84856046088 scopus 로고    scopus 로고
    • Rage-a rapid graphlet enumerator for large networks
    • Marcus D. and Shavitt Y. (2012). RAGE-a rapid graphlet enumerator for large networks. Comput. Netw., 56, 810-819
    • (2012) Comput. Netw , vol.56 , pp. 810-819
    • Marcus, D.1    Shavitt, Y.2
  • 30
    • 49649109285 scopus 로고    scopus 로고
    • Uncovering biological network function via graphlet degree signatures
    • Milenković, T. and Pržulj N. (2008). Uncovering biological network function via graphlet degree signatures. Cancer Inform., 6, 257-273
    • (2008) Cancer Inform , vol.6 , pp. 257-273
    • Milenković, T.1    Pržulj, N.2
  • 31
    • 41349101546 scopus 로고    scopus 로고
    • GraphCrunch: A tool for large network analyses
    • Milenković, T., et al. (2008). GraphCrunch: a tool for large network analyses. BMC Bioinformatics, 9, 70
    • (2008) BMC Bioinformatics , vol.9 , pp. 70
    • Milenković, T.1
  • 32
    • 67649460735 scopus 로고    scopus 로고
    • Optimized null model for protein structure networks
    • Milenković, T., et al. (2009). Optimized null model for protein structure networks. PLoS One, 4, e5967
    • (2009) Plos One , vol.4 , pp. e5967
    • Milenković, T.1
  • 33
    • 76049094356 scopus 로고    scopus 로고
    • Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data
    • Milenković, T., et al. (2010a) Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J. R. Soc. Interface, 7, 423-437
    • (2010) J. R. Soc. Interface , vol.7 , pp. 423-437
    • Milenković, T.1
  • 34
    • 77955499935 scopus 로고    scopus 로고
    • Optimal network alignment with graphlet degree vectors
    • Milenković, T., et al. (2010b) Optimal network alignment with graphlet degree vectors. Cancer Inform., 9, 121
    • (2010) Cancer Inform , vol.9 , pp. 121
    • Milenković, T.1
  • 35
    • 80052047022 scopus 로고    scopus 로고
    • Dominating biological networks
    • Milenković, T., et al. (2011). Dominating biological networks. PLoS One, 6, e23016
    • (2011) Plos One , vol.6 , pp. e23016
    • Milenković, T.1
  • 36
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: Simple building blocks of complex networks
    • Milo R., et al. (2002). Network motifs: simple building blocks of complex networks. Science, 298, 824-827
    • (2002) Science , vol.298 , pp. 824-827
    • Milo, R.1
  • 37
    • 1542287343 scopus 로고    scopus 로고
    • Superfamilies of evolved and designed networks
    • Milo R., et al. (2004). Superfamilies of evolved and designed networks. Science, 303, 1538-1542
    • (2004) Science , vol.303 , pp. 1538-1542
    • Milo, R.1
  • 39
    • 84861922656 scopus 로고    scopus 로고
    • Components in time-varying graphs
    • Nicosia V., et al. (2012). Components in time-varying graphs. Chaos, 22, 3101
    • (2012) Chaos , vol.22 , pp. 3101
    • Nicosia, V.1
  • 40
    • 9144236198 scopus 로고    scopus 로고
    • Human protein reference database as a discovery resource for proteomics
    • Peri S., et al. (2004). Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res., 32, 497-501
    • (2004) Nucleic Acids Res , vol.32 , pp. 497-501
    • Peri, S.1
  • 41
    • 31044446956 scopus 로고    scopus 로고
    • Scan statistics on Enron graphs
    • Priebe C.E., et al. (2005). Scan statistics on Enron graphs. Comput. Math. Org. Theory, 11, 229-247
    • (2005) Comput. Math. Org. Theory , vol.11 , pp. 229-247
    • Priebe, C.E.1
  • 42
    • 33846672214 scopus 로고    scopus 로고
    • Biological network comparison using graphlet degree distribution
    • Pržulj N. (2007). Biological network comparison using graphlet degree distribution. Bioinformatics, 23, e177-e183
    • (2007) Bioinformatics , vol.23 , pp. e177-e183
    • Pržulj, N.1
  • 43
    • 78651455332 scopus 로고    scopus 로고
    • Protein-protein interactions: Making sense of networks via graph-theoretic modeling
    • Pržulj N. (2011). Protein-protein interactions: making sense of networks via graph-theoretic modeling. BioEssays, 33, 115-123
    • (2011) BioEssays , vol.33 , pp. 115-123
    • Pržulj, N.1
  • 44
    • 12344273375 scopus 로고    scopus 로고
    • Modeling interactome: Scale-free or geometric?
    • Pržulj N., et al. (2004). Modeling interactome: scale-free or geometric?. Bioinformatics, 20, 3508-3515
    • (2004) Bioinformatics , vol.20 , pp. 3508-3515
    • Pržulj, N.1
  • 45
    • 77956575603 scopus 로고    scopus 로고
    • Geometric evolutionary dynamics of protein interaction networks
    • World Scientific Press, Singapore
    • Pržulj N., et al. (2010). Geometric evolutionary dynamics of protein interaction networks. In: Pacific Symposium on Biocomputing, vol. 2009, World Scientific Press, Singapore, pp. 178-189
    • (2010) Pacific Symposium on Biocomputing , vol.2009 , pp. 178-189
    • Pržulj, N.1
  • 46
    • 77950353931 scopus 로고    scopus 로고
    • Toward the dynamic interactome: It's about time
    • Przytycka T.M., et al. (2010). Toward the dynamic interactome: it's about time. Brief. Bioinform., 11, 15-29
    • (2010) Brief. Bioinform , vol.11 , pp. 15-29
    • Przytycka, T.M.1
  • 47
    • 84906656572 scopus 로고    scopus 로고
    • Graft: An efficient graphlet counting method for large graph analysis
    • Rahman M., et al. (2014). GRAFT: an efficient graphlet counting method for large graph analysis. IEEE Trans. Knowl. Data Eng., 26, 2466-2478
    • (2014) IEEE Trans Knowl. Data Eng , vol.26 , pp. 2466-2478
    • Rahman, M.1
  • 48
    • 84921734389 scopus 로고    scopus 로고
    • Magna: Maximizing accuracy in global network alignment
    • Saraph V. and Milenković, T. (2014). MAGNA: maximizing accuracy in global network alignment. Bioinformatics, 30, 2931-2940
    • (2014) Bioinformatics , vol.30 , pp. 2931-2940
    • Saraph, V.1    Milenković, T.2
  • 49
    • 33747876876 scopus 로고    scopus 로고
    • Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging
    • Simon N.M., et al. (2006). Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol. Psychiat., 60, 432-435
    • (2006) Biol. Psychiat , vol.60 , pp. 432-435
    • Simon, N.M.1
  • 50
    • 84930191492 scopus 로고    scopus 로고
    • Graphlet signature-based scoring method to estimate protein-ligand binding affinity
    • Singh O., et al. (2014). Graphlet signature-based scoring method to estimate protein-ligand binding affinity. R. Soc. Open Sci., 1, 140306
    • (2014) R. Soc. Open Sci , vol.1 , pp. 140306
    • Singh, O.1
  • 51
    • 84866447355 scopus 로고    scopus 로고
    • Graphlet-based edge clustering reveals pathogen-interacting proteins
    • Solava R.W., et al. (2012). Graphlet-based edge clustering reveals pathogen-interacting proteins. Bioinformatics, 28, 480-486
    • (2012) Bioinformatics , vol.28 , pp. 480-486
    • Solava, R.W.1
  • 52
    • 77149167608 scopus 로고    scopus 로고
    • Graphlet kernels for prediction of functional residues in protein structures
    • Vacic V., et al. (2010). Graphlet kernels for prediction of functional residues in protein structures. J. Comput. Biol., 17, 55-72
    • (2010) J. Comput. Biol , vol.17 , pp. 55-72
    • Vacic, V.1
  • 53
    • 44849116262 scopus 로고    scopus 로고
    • Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach
    • Valencia M., et al. (2008). Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. Phys. Rev., 77, 050905
    • (2008) Phys. Rev , vol.77 , pp. 050905
    • Valencia, M.1
  • 54
    • 0013173298 scopus 로고    scopus 로고
    • Modeling of protein interaction networks
    • Vazquez A., et al. (2001). Modeling of protein interaction networks. Complex Syst., 1, 38
    • (2001) Complex Syst , vol.1 , pp. 38
    • Vazquez, A.1
  • 55
    • 84899861312 scopus 로고    scopus 로고
    • Identification of human disease genes from interactome network using graphlet interaction
    • Wang X.-D., et al. (2014). Identification of human disease genes from interactome network using graphlet interaction. PLoS One, 9, e86142
    • (2014) Plos One , vol.9 , pp. e86142
    • Wang, X.-D.1
  • 56
    • 84921321474 scopus 로고    scopus 로고
    • Comparative network analysis via differential graphlet communities
    • Wong S.W., et al. (2014). Comparative network analysis via differential graphlet communities. Proteomics, 15, 608-617
    • (2014) Proteomics , vol.15 , pp. 608-617
    • Wong, S.W.1
  • 57
    • 84897401644 scopus 로고    scopus 로고
    • Revealing the hidden language of complex networks
    • Yaverog?lu, Ö.N., et al. (2014). Revealing the hidden language of complex networks. Sci. Rep., 4, 4547
    • (2014) Sci. Rep , vol.4 , pp. 4547
    • Yaveroglu Ö., N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.