-
1
-
-
72049086184
-
-
Alley, W. M.; Hamdemir, I. K.; Johnson, K. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2010, 315, 1-27 10.1016/j.molcata.2009.07.007
-
(2010)
J. Mol. Catal. A: Chem.
, vol.315
, pp. 1-27
-
-
Alley, W.M.1
Hamdemir, I.K.2
Johnson, K.A.3
Finke, R.G.4
-
2
-
-
61549133200
-
-
Alley, W. M.; Girard, C. W.; Özkar, S.; Finke, R. G. Inorg. Chem. 2009, 48, 1114-1121 10.1021/ic801933b
-
(2009)
Inorg. Chem.
, vol.48
, pp. 1114-1121
-
-
Alley, W.M.1
Girard, C.W.2
Özkar, S.3
Finke, R.G.4
-
3
-
-
79958179276
-
-
Alley, W. M.; Hamdemir, I. K.; Wang, Q.; Frenkel, A. I.; Li, L.; Yang, J. C.; Menard, L. D.; Nuzzo, R. G.; Özkar, S.; Yih, K.-H.; Johnson, K. A.; Finke, R. G. Langmuir 2011, 27, 6279-6294 10.1021/la200053f
-
(2011)
Langmuir
, vol.27
, pp. 6279-6294
-
-
Alley, W.M.1
Hamdemir, I.K.2
Wang, Q.3
Frenkel, A.I.4
Li, L.5
Yang, J.C.6
Menard, L.D.7
Nuzzo, R.G.8
Özkar, S.9
Yih, K.-H.10
Johnson, K.A.11
Finke, R.G.12
-
5
-
-
77956219767
-
-
Alley, W. M.; Hamdemir, I. K.; Wang, Q.; Frenkel, A. I.; Li, L.; Yang, J. C.; Menard, L. D.; Nuzzo, R. G.; Özkar, S.; Johnson, K. A.; Finke, R. G. Inorg. Chem. 2010, 49, 8131-8147 10.1021/ic101237c
-
(2010)
Inorg. Chem.
, vol.49
, pp. 8131-8147
-
-
Alley, W.M.1
Hamdemir, I.K.2
Wang, Q.3
Frenkel, A.I.4
Li, L.5
Yang, J.C.6
Menard, L.D.7
Nuzzo, R.G.8
Özkar, S.9
Johnson, K.A.10
Finke, R.G.11
-
6
-
-
84859584565
-
-
Hamdemir, I. K.; Özkar, S.; Yih, K.-H.; Mondloch, J. E.; Finke, R. G. ACS Catal. 2012, 2, 632-641 10.1021/cs200688g
-
(2012)
ACS Catal.
, vol.2
, pp. 632-641
-
-
Hamdemir, I.K.1
Özkar, S.2
Yih, K.-H.3
Mondloch, J.E.4
Finke, R.G.5
-
7
-
-
84882403760
-
-
Hamdemir, I. K.; Özkar, S.; Finke, R. G. J. Mol. Catal. A: Chem. 2013, 378, 333-343 10.1016/j.molcata.2013.07.005
-
(2013)
J. Mol. Catal. A: Chem.
, vol.378
, pp. 333-343
-
-
Hamdemir, I.K.1
Özkar, S.2
Finke, R.G.3
-
8
-
-
84855930381
-
-
Crabtree, R. H. Chem. Rev. 2012, 112, 1536-1554 10.1021/cr2002905
-
(2012)
Chem. Rev.
, vol.112
, pp. 1536-1554
-
-
Crabtree, R.H.1
-
10
-
-
0003487210
-
-
University Science Books: Mill Valley, CA
-
Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; pp 561-562.
-
(1987)
Principles and Applications of Organotransition Metal Chemistry
, pp. 561-562
-
-
Collman, J.P.1
Hegedus, L.S.2
Norton, J.R.3
Finke, R.G.4
-
13
-
-
84930652880
-
-
3 has been shown to be.(10b).
-
3 has been shown to be.(10b).
-
-
-
-
14
-
-
77954641023
-
-
Mondloch, J. E.; Wang, Q.; Frenkel, A. I.; Finke, R. G. J. Am. Chem. Soc. 2010, 132, 9701-9714 10.1021/ja1030062
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 9701-9714
-
-
Mondloch, J.E.1
Wang, Q.2
Frenkel, A.I.3
Finke, R.G.4
-
15
-
-
84930648441
-
-
2 nd ed. Wiley: Hoboken, NJ, Chapter 5
-
Bartholomew, C. H.; Farrauto, R. J. Fundamentals of Industrial Catalytic Processes; 2 nd ed.; Wiley: Hoboken, NJ, 2006; Chapter 5, p 261.
-
(2006)
Fundamentals of Industrial Catalytic Processes
, pp. 261
-
-
Bartholomew, C.H.1
Farrauto, R.J.2
-
16
-
-
84930662297
-
-
As noted by Bartholomew(12a) (see also Boudart's original work(39)), "The turnover frequency (TOF) is a specific reaction rate based on the number of active sites." The authors further specify that the "specific reaction rate" = 1/(vQ) × d[ n ]/d t where v is the stoichiometric coefficient in the reaction; n is the number of moles of the species; t is time; and Q is the volume, weight, or surface area of the catalyst. Units are molecules/site-second or 1/s.
-
As noted by Bartholomew(12a) (see also Boudart's original work(39)), "The turnover frequency (TOF) is a specific reaction rate based on the number of active sites." The authors further specify that the "specific reaction rate" = 1/(vQ) × d[ n ]/d t where v is the stoichiometric coefficient in the reaction; n is the number of moles of the species; t is time; and Q is the volume, weight, or surface area of the catalyst. Units are molecules/site-second or 1/s.
-
-
-
-
17
-
-
30344482586
-
-
Smirnov, V. V.; Tarkhanova, I. G.; Kokorin, A. I.; Tsvetkov, D. S. Kinet. Catal. 2005, 46, 861-866 10.1007/s10975-005-0148-y
-
(2005)
Kinet. Catal.
, vol.46
, pp. 861-866
-
-
Smirnov, V.V.1
Tarkhanova, I.G.2
Kokorin, A.I.3
Tsvetkov, D.S.4
-
18
-
-
33644852001
-
-
Nindakova, L. O.; Shmidt, F. K.; Saraev, V. V.; Shainyan, B. A.; Chipanina, N. N.; Umanets, V. A.; Belonogova, L. N.; Toryashinova, D.-S. D. Kinet. Catal. 2006, 47, 54-63 10.1134/S0023158406010095
-
(2006)
Kinet. Catal.
, vol.47
, pp. 54-63
-
-
Nindakova, L.O.1
Shmidt, F.K.2
Saraev, V.V.3
Shainyan, B.A.4
Chipanina, N.N.5
Umanets, V.A.6
Belonogova, L.N.7
Toryashinova, D.-S.D.8
-
19
-
-
20344399171
-
-
Shmidt, F. K.; Nindakova, L. O.; Shainyan, B. A.; Saraev, V. V.; Chipanina, N. N.; Umanetz, V. A. J. Mol. Catal. A: Chem. 2005, 235, 161-172 10.1016/j.molcata.2005.02.033
-
(2005)
J. Mol. Catal. A: Chem.
, vol.235
, pp. 161-172
-
-
Shmidt, F.K.1
Nindakova, L.O.2
Shainyan, B.A.3
Saraev, V.V.4
Chipanina, N.N.5
Umanetz, V.A.6
-
20
-
-
0037028556
-
-
Steinhoff, B. A.; Fix, S. R.; Stahl, S. S. J. Am. Chem. Soc. 2002, 124, 766-767 10.1021/ja016806w
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 766-767
-
-
Steinhoff, B.A.1
Fix, S.R.2
Stahl, S.S.3
-
21
-
-
33845283465
-
-
Sanchez-Delgado, R. A.; Andriollo, A.; Puga, J.; Martin, G. Inorg. Chem. 1987, 26, 1867-1870 10.1021/ic00259a012
-
(1987)
Inorg. Chem.
, vol.26
, pp. 1867-1870
-
-
Sanchez-Delgado, R.A.1
Andriollo, A.2
Puga, J.3
Martin, G.4
-
22
-
-
0141466501
-
-
D'Ornelas, L.; Choplin, A.; Basset, J. M.; Puga, J.; Sanchez-Delgado, R. A. Inorg. Chem. 1986, 25, 4315-4316 10.1021/ic00243a051
-
(1986)
Inorg. Chem.
, vol.25
, pp. 4315-4316
-
-
D'Ornelas, L.1
Choplin, A.2
Basset, J.M.3
Puga, J.4
Sanchez-Delgado, R.A.5
-
23
-
-
10844265426
-
-
Fairlamb, I. J. S.; Kapdi, A. R.; Lee, A. F.; Sanchez, G.; Lopez, G.; Serrano, J. L.; Garcia, L.; Perez, J.; Perez, E. Dalton Transactions. 2004, 3970-3981 10.1039/b413886d
-
(2004)
Dalton Transactions.
, pp. 3970-3981
-
-
Fairlamb, I.J.S.1
Kapdi, A.R.2
Lee, A.F.3
Sanchez, G.4
Lopez, G.5
Serrano, J.L.6
Garcia, L.7
Perez, J.8
Perez, E.9
-
25
-
-
0141856236
-
-
De Vries, A. H. M.; Mulders, J. M. C. A.; Mommers, J. H. M.; Henderickx, H. J. W.; De Vries, J. G. Org. Lett. 2003, 5, 3285-3288 10.1021/ol035184b
-
(2003)
Org. Lett.
, vol.5
, pp. 3285-3288
-
-
De Vries, A.H.M.1
Mulders, J.M.C.A.2
Mommers, J.H.M.3
Henderickx, H.J.W.4
De Vries, J.G.5
-
28
-
-
51749085074
-
-
Watzky, M. A.; Finney, E. E.; Finke, R. G. J. Am. Chem. Soc. 2008, 130, 11959-11969 10.1021/ja8017412
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 11959-11969
-
-
Watzky, M.A.1
Finney, E.E.2
Finke, R.G.3
-
29
-
-
84930667829
-
-
When the Finke-Watzky (F-W) two step (A → B, A + B → 2B) slow, continuous nucleation and autocatalytic surface-growth mechanism of nanoparticle formation(23) is followed, then a size vs time relationship can be derived for transition metal nanoparticles, as done in the above cited publication.(24) However, lower concentrations often yield fewer nuclei, and that tends to make larger, not smaller, particles.
-
When the Finke-Watzky (F-W) two step (A → B, A + B → 2B) slow, continuous nucleation and autocatalytic surface-growth mechanism of nanoparticle formation(23) is followed, then a size vs time relationship can be derived for transition metal nanoparticles, as done in the above cited publication.(24) However, lower concentrations often yield fewer nuclei, and that tends to make larger, not smaller, particles.
-
-
-
-
30
-
-
84930645833
-
-
n nanocluster hydrogenation catalysts, the larger particles typically being more active.(25b, 25c)
-
n nanocluster hydrogenation catalysts, the larger particles typically being more active.(25b, 25c)
-
-
-
-
31
-
-
20444385905
-
-
Besson, C.; Finney, E. E.; Finke, R. G. J. Am. Chem. Soc. 2005, 127, 8179-8184 10.1021/ja0504439
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 8179-8184
-
-
Besson, C.1
Finney, E.E.2
Finke, R.G.3
-
32
-
-
26944471176
-
-
Besson, C.; Finney, E. E.; Finke, R. G. Chem. Mater. 2005, 17, 4925-4938 10.1021/cm050207x
-
(2005)
Chem. Mater.
, vol.17
, pp. 4925-4938
-
-
Besson, C.1
Finney, E.E.2
Finke, R.G.3
-
33
-
-
74849107936
-
-
Zhou, X.; Xu, W.; Liu, G.; Panda, D.; Chen, P. J. Am. Chem. Soc. 2009, 132, 138-146 10.1021/ja904307n
-
(2009)
J. Am. Chem. Soc.
, vol.132
, pp. 138-146
-
-
Zhou, X.1
Xu, W.2
Liu, G.3
Panda, D.4
Chen, P.5
-
34
-
-
1942467986
-
-
For a lead reference, see the following and references therein
-
For a lead reference, see the following and references therein: Doll, K. M.; Finke, R. G. Inorg. Chem. 2004, 43, 2611-2623 10.1021/ic030141c
-
(2004)
Inorg. Chem.
, vol.43
, pp. 2611-2623
-
-
Doll, K.M.1
Finke, R.G.2
-
35
-
-
84930647432
-
-
See also the discussion of trace impurities, as well as the other valuable hints for performing kinetic studies, in; Bernasconi, Wiley: New York, Vol.
-
See also the discussion of trace impurities, as well as the other valuable hints for performing kinetic studies, in Investigations of Rates and Mechanisms of Reactions; Bernasconi, Ed.; Wiley: New York, 1986; Vol. VI, p 238.
-
(1986)
Investigations of Rates and Mechanisms of Reactions
, vol.6
, pp. 238
-
-
-
36
-
-
6744265689
-
-
Byrd, J. E.; Wilmarth, W. K. Inorg. Chim. Acta, Rev. 1971, 5, 7-18 10.1016/0073-8085(71)80010-4
-
(1971)
Inorg. Chim. Acta, Rev.
, vol.5
, pp. 7-18
-
-
Byrd, J.E.1
Wilmarth, W.K.2
-
37
-
-
0000172375
-
-
Malin, J. M.; Toma, H. E.; Giesbrecht, E. J. Chem. Educ. 1977, 54, 385 10.1021/ed054p385
-
(1977)
J. Chem. Educ.
, vol.54
, pp. 385
-
-
Malin, J.M.1
Toma, H.E.2
Giesbrecht, E.3
-
38
-
-
28144454227
-
-
Pawluk, T.; Hirata, Y.; Wang, L. J. Phys. Chem. B 2005, 109, 20817-20823 10.1021/jp053563b
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 20817-20823
-
-
Pawluk, T.1
Hirata, Y.2
Wang, L.3
-
39
-
-
84930647346
-
-
The DFT calculations performed by Pawluk et. al(32a) on naked, unligated Ir particles are also consistent with the constant particle sizes observed. Specifically, Pawluk and co-workers find that (naked; unligated) Ir particles prefer a simple cubic structure until a 48 atom particle (5.91 eV per Ir atom binding energy) is reached, at which point the transition to face-centered cubic occurs. This 48 atom (about 1.1 nm diameter) limit restricts coalescence of at least naked, smaller nanoparticles because energetically unfavorable surface rearrangements would be required, again with the caveat here that these calculations refer strictly to only naked, unligated Ir nanoparticles.
-
The DFT calculations performed by Pawluk et. al(32a) on naked, unligated Ir particles are also consistent with the constant particle sizes observed. Specifically, Pawluk and co-workers find that (naked; unligated) Ir particles prefer a simple cubic structure until a 48 atom particle (5.91 eV per Ir atom binding energy) is reached, at which point the transition to face-centered cubic occurs. This 48 atom (about 1.1 nm diameter) limit restricts coalescence of at least naked, smaller nanoparticles because energetically unfavorable surface rearrangements would be required, again with the caveat here that these calculations refer strictly to only naked, unligated Ir nanoparticles.
-
-
-
-
40
-
-
84861877423
-
-
Aydin, C.; Lu, J.; Browning, N. D.; Gates, B. C. Angew. Chem., Int. Ed. 2012, 51, 5929-5934 10.1002/anie.201201726
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 5929-5934
-
-
Aydin, C.1
Lu, J.2
Browning, N.D.3
Gates, B.C.4
-
41
-
-
56449084190
-
-
Uzun, A.; Gates, B. C. Angew. Chem., Int. Ed. 2008, 47, 9245-9248 10.1002/anie.200802140
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 9245-9248
-
-
Uzun, A.1
Gates, B.C.2
-
42
-
-
84930655818
-
-
x equilibrium as a function of the specific L, bidendate L-L, and temperature. ". This statement is still true in.
-
x equilibrium as a function of the specific L, bidendate L-L, and temperature... ". This statement is still true in 2015.
-
(2015)
-
-
-
43
-
-
85073174281
-
-
app values -makes sense only when the rate law for each system being compared is known.
-
app values makes sense only when the rate law for each system being compared is known.
-
-
-
Kozuch1
-
45
-
-
84874584250
-
-
Lente, G. ACS Catal. 2013, 3, 381-382 10.1021/cs300846b
-
(2013)
ACS Catal.
, vol.3
, pp. 381-382
-
-
Lente, G.1
-
46
-
-
0000074194
-
-
For a classic contribution on the definition and proper use of TOF in catalysis, see
-
For a classic contribution on the definition and proper use of TOF in catalysis, see: Boudart, M. Chem. Rev. 1995, 95, 661-666 10.1021/cr00035a009
-
(1995)
Chem. Rev.
, vol.95
, pp. 661-666
-
-
Boudart, M.1
-
48
-
-
80053032564
-
-
Yih, K.-H.; Alley, W. M.; Finke, R. G. Organometallics 2011, 30, 5068-5070 10.1021/om2003249
-
(2011)
Organometallics
, vol.30
, pp. 5068-5070
-
-
Yih, K.-H.1
Alley, W.M.2
Finke, R.G.3
-
51
-
-
84930640702
-
-
See also the concept of a "Hydrogen Reservoir", as discussed in the two Ph.D. theses listed as references 8 and 9 in this 1994 paper.(43)
-
See also the concept of a "Hydrogen Reservoir", as discussed in the two Ph.D. theses listed as references 8 and 9 in this 1994 paper.(43)
-
-
-
-
52
-
-
80053489418
-
-
Lu, J.; Serna, P.; Aydin, C.; Browning, N. D.; Gates, B. C. J. Am. Chem. Soc. 2011, 133, 16186-16195 10.1021/ja206486j
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 16186-16195
-
-
Lu, J.1
Serna, P.2
Aydin, C.3
Browning, N.D.4
Gates, B.C.5
|