-
1
-
-
27744514494
-
Optimisation of Recurrent NN by GA with Variable Length Genotype
-
McKay B, Slaney J (eds) Springer, Berlin Heidelberg New York
-
Arotaritei D, Negoita Gh M (2002) Optimisation of Recurrent NN by GA with Variable Length Genotype. In: McKay B, Slaney J (eds) AI2002: advances in artificial intelligence. Springer, Berlin Heidelberg New York, pp 691-692
-
(2002)
AI2002: Advances in Artificial Intelligence
, pp. 691-692
-
-
Arotaritei, D.1
Negoita, Gh.M.2
-
2
-
-
0002099561
-
Supervised learning of probability distributions by neural networks
-
Anderson D (ed) American Institute of Physics, New York
-
Baum EB, Wilczek F (1988) Supervised learning of probability distributions by neural networks. In: Anderson D (ed) Neural information processing systems. American Institute of Physics, New York, pp 52-61
-
(1988)
Neural Information Processing Systems
, pp. 52-61
-
-
Baum, E.B.1
Wilczek, F.2
-
3
-
-
0033272085
-
The effect of misclassification costs on neural network classifiers
-
Berardi VL, Zhang GQ (1999) The effect of misclassification costs on neural network classifiers. Decis Sci 30(3):659-682
-
(1999)
Decis Sci
, vol.30
, Issue.3
, pp. 659-682
-
-
Berardi, V.L.1
Zhang, G.Q.2
-
5
-
-
0001373629
-
Links between Markov models and multilayer perceptrons
-
Toretzky DS (ed) Morgan Kaufmann, San Mateo
-
Bourlard H, Wellekens CJ (1989) Links between Markov models and multilayer perceptrons. In: Toretzky DS (ed) Advances in neural information processing systems, vol 1. Morgan Kaufmann, San Mateo, pp 502-510
-
(1989)
Advances in Neural Information Processing Systems
, vol.1
, pp. 502-510
-
-
Bourlard, H.1
Wellekens, C.J.2
-
6
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2:303-314
-
(1989)
Math Control Signals Syst
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
8
-
-
85013610201
-
A genetic-based method for learning the parameter of a fuzzy inference system
-
Kasabov N, Coghill G (eds) IEEE Computer Society, Los Alamitos
-
Fagarasan F, Negoita Gh M (1995) A genetic-based method for learning the parameter of a fuzzy inference system. In: Kasabov N, Coghill G (eds) Artificial neural networks and expert systems. IEEE Computer Society, Los Alamitos, pp 223-226
-
(1995)
Artificial Neural Networks and Expert Systems
, pp. 223-226
-
-
Fagarasan, F.1
Negoita, Gh.M.2
-
9
-
-
0000783575
-
The upstart algorithm: A method for constructing and training feedforward neural networks
-
Frean M (1990) The upstart algorithm: a method for constructing and training feedforward neural networks. Neural Comput 2(2):198-209
-
(1990)
Neural Comput
, vol.2
, Issue.2
, pp. 198-209
-
-
Frean, M.1
-
10
-
-
0011948879
-
Connectionist architectures for multi-speaker phoneme recognition
-
Toretzky DS (ed) Morgan Kaufmann, San Mateo
-
Hampshire JB, Waibel A (1990) Connectionist architectures for multi-speaker phoneme recognition. In: Toretzky DS (ed) Advances in neural information processing systems, vol 2. Morgan Kaufmann, San Mateo, pp 203-210
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 203-210
-
-
Hampshire, J.B.1
Waibel, A.2
-
11
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4:251-257
-
(1991)
Neural Netw
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
12
-
-
0002233827
-
Estimating posterior probabilities in classification problems with neural networks
-
Hung MS, Hu MY, Patuwo BE, Shanker M (1996) Estimating posterior probabilities in classification problems with neural networks. Int J Comput Intell Organ 1:49-60
-
(1996)
Int J Comput Intell Organ
, vol.1
, pp. 49-60
-
-
Hung, M.S.1
Hu, M.Y.2
Patuwo, B.E.3
Shanker, M.4
-
13
-
-
36149031331
-
Learning in feedforward layered networks: The tiling algorithm
-
Mezard M, Nadal JP (1989) Learning in feedforward layered networks: the tiling algorithm. J Phys A 22:21921-2203
-
(1989)
J Phys A
, vol.22
, pp. 21921-22203
-
-
Mezard, M.1
Nadal, J.P.2
-
14
-
-
0003663467
-
-
McGraw Hill, New York
-
Papoulis A (1964) Probability, random variables, and stochastic processes, 1st edn. McGraw Hill, New York, p 175
-
(1964)
Probability, Random Variables, and Stochastic Processes, 1st Edn.
, pp. 175
-
-
Papoulis, A.1
-
15
-
-
0001595997
-
Neural network classifiers estimate Bayesian a-posteriori probabilities
-
Richard MD, Lippmann RP (1991) Neural network classifiers estimate Bayesian a-posteriori probabilities. Neural comput 3:461-483
-
(1991)
Neural Comput
, vol.3
, pp. 461-483
-
-
Richard, M.D.1
Lippmann, R.P.2
-
16
-
-
0000646059
-
Learning internal representations by error propagation
-
Rumelhart DE, McClelland JL, the PDP group (eds) MIT Press, Cambridge, MA
-
Rumelhart DE, Hinton GE, Williams RJ (1986a) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, the PDP group (eds) Parallel distributed processing: exploration in the microstructure of cognition, Foundations. MIT Press, Cambridge, MA, pp 318-362
-
(1986)
Parallel Distributed Processing: Exploration in the Microstructure of Cognition, Foundations
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
18
-
-
0025840875
-
A note on least-squares learning procedures and classification by neural networks
-
Shoemaker PA (1991) A note on least-squares learning procedures and classification by neural networks. IEEE Trans Neural Netw 2(1):158-160
-
(1991)
IEEE Trans Neural Netw
, vol.2
, Issue.1
, pp. 158-160
-
-
Shoemaker, P.A.1
-
19
-
-
0025597157
-
Neural network classification: A Bayesian interpretation
-
Wan EA (1990) Neural network classification: a Bayesian interpretation. IEEE Trans Neural Netw 1(4):303-375
-
(1990)
IEEE Trans Neural Netw
, vol.1
, Issue.4
, pp. 303-375
-
-
Wan, E.A.1
-
20
-
-
0000243355
-
Learning in artificial neural networks: A statistical perspective
-
White H (1989) Learning in artificial neural networks: a statistical perspective. Neural Comput 1:425-464
-
(1989)
Neural Comput
, vol.1
, pp. 425-464
-
-
White, H.1
-
21
-
-
0025635525
-
Connectionists nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
-
White H (1990) Connectionists nonparametric regression: multilayer feedforward networks can learn arbitrary mappings. Neural Netw 3:535-549
-
(1990)
Neural Netw
, vol.3
, pp. 535-549
-
-
White, H.1
|