메뉴 건너뛰기




Volumn 2324, Issue , 2012, Pages 44-52

Traffic incident detection using multiple-kernel support vector machine

Author keywords

[No Author keywords available]

Indexed keywords

INTELLIGENT SYSTEMS;

EID: 84930208593     PISSN: 03611981     EISSN: 21694052     Source Type: Journal    
DOI: 10.3141/2324-06     Document Type: Article
Times cited : (48)

References (21)
  • 1
    • 0042664078 scopus 로고    scopus 로고
    • Incident detection using support vector machines
    • Yuan, F., and R. Cheu. Incident Detection Using Support Vector Machines. Transportation Research Part C, Vol. 11, 2003, pp. 309–328.
    • (2003) Transportation Research Part C , vol.11 , pp. 309-328
    • Yuan, F.1    Cheu, R.2
  • 2
    • 0018115446 scopus 로고
    • Freeway incident-detection algorithms based on decision trees with states
    • TRB National Research Council Washington DC
    • Payne, H. J., and S. C. Tignor. Freeway Incident-Detection Algorithms Based on Decision Trees with States. In Transportation Research Record 682, TRB, National Research Council, Washington, D.C., 1978, pp. 30–37.
    • (1978) Transportation Research Record , vol.682 , pp. 30-37
    • Payne, H.J.1    Tignor, S.C.2
  • 3
    • 0006065102 scopus 로고
    • Incident detection: A Bayesian approach
    • TRB National Research Council Washington DC
    • Levin, M., and G. M. Krause. Incident Detection: A Bayesian Approach. In Transportation Research Record 682, TRB, National Research Council, Washington, D.C., 1978, pp. 52–58.
    • (1978) Transportation Research Record , vol.682 , pp. 52-58
    • Levin, M.1    Krause, G.M.2
  • 4
    • 0019089152 scopus 로고
    • Time series models for freeway incident detection
    • Ahmed, M. S., and A. R. Cook. Time Series Models for Freeway Incident Detection. Journal of Transportation Engineering, ASCE, Vol. 106, No. 6, 1982, pp. 731–745.
    • (1982) Journal of Transportation Engineering, ASCE , vol.106 , Issue.6 , pp. 731-745
    • Ahmed, M.S.1    Cook, A.R.2
  • 6
    • 76149116227 scopus 로고    scopus 로고
    • Development of an automatic traffic conflict detection system based on image tracking technology
    • Transportation Research Board of the National Academies Washington DC
    • Oh, J., J.-Y. Min, M. Kim, and H. Cho. Development of an Automatic Traffic Conflict Detection System Based on Image Tracking Technology. In Transportation Research Record: Journal of the Transportation Research Board, No. 2129, Transportation Research Board of the National Academies, Washington, D.C., 2009, pp. 45–54.
    • (2009) Transportation Research Record: Journal of The Transportation Research Board, No. 2129 , pp. 45-54
    • Oh, J.1    Min, J.-Y.2    Kim, M.3    Cho, H.4
  • 7
    • 76549100707 scopus 로고    scopus 로고
    • Automatic freeway incident detection based on fundamental diagrams of traffic flow
    • Transportation Research Board of the National Academies Washington DC
    • Jin, J., and B. Ran. Automatic Freeway Incident Detection Based on Fundamental Diagrams of Traffic Flow. In Transportation Research Record: Journal of the Transportation Research Board, No. 2099, Transportation Research Board of the National Academies, Washington, D.C., 2009, pp. 65–75.
    • (2009) Transportation Research Record: Journal of The Transportation Research Board, No. 2129 , pp. 65-75
    • Jin, J.1    Ran, B.2
  • 8
    • 15844385434 scopus 로고    scopus 로고
    • Adaptive neural network models for automatic incident detection on freeways
    • Srinivasan, D., X. Jin, and R. Cheu. Adaptive Neural Network Models for Automatic Incident Detection on Freeways. Neurocomputing, Vol. 64, 2005, pp. 473–496.
    • (2005) Neurocomputing , vol.64 , pp. 473-496
    • Srinivasan, D.1    Jin, X.2    Cheu, R.3
  • 9
    • 10944232643 scopus 로고    scopus 로고
    • Training neural networks to detect freeway incidents by using particle swarm optimization
    • TransportationResearchBoardoftheNational Academies Washington DC
    • Cheu, R. L., D. Srinivasan, and W. H. Loo. Training Neural Networks to Detect Freeway Incidents by Using Particle Swarm Optimization. In Transportation Research Record: Journal of the Transportation ResearchBoard,No.1867,TransportationResearchBoardoftheNational Academies, Washington, D.C., 2004, pp. 11–18.
    • (2004) Transportation Research Record: Journal of The Transportation Researchboard,no.1867 , pp. 11-18
    • Cheu, R.L.1    Srinivasan, D.2    Loo, W.H.3
  • 12
    • 67349260139 scopus 로고    scopus 로고
    • Construct support vector machine ensemble to detect traffic incident
    • Chen, S., W. Wang, and H. Van Zuylen. Construct Support Vector Machine Ensemble to Detect Traffic Incident. Expert Systems with Applications, Vol. 36, 2009, pp. 10976–10986.
    • (2009) Expert Systems with Applications , vol.36 , pp. 10976-10986
    • Chen, S.1    Wang, W.2    Van Zuylen, H.3
  • 17
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • MIT Press
    • Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. In Advances in Kernel Methods: Support Vector Learning, MIT Press, 1998, pp. 98–112.
    • (1998) Advances in Kernel Methods: Support Vector Learning , pp. 98-112
    • Platt, J.1
  • 19
    • 38649102211 scopus 로고    scopus 로고
    • Incident detection algorithm based on partial least squares regression
    • Wang, W., S. Chen, and G. Qu. Incident Detection Algorithm Based on Partial Least Squares Regression. Transportation Research Part C, Vol. 16, 2008, pp. 54–70.
    • (2008) Transportation Research Part C , vol.16 , pp. 54-70
    • Wang, W.1    Chen, S.2    Qu, G.3
  • 20
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • Fawcett, T. An Introduction to Roc Analysis. Pattern Recognition Letters, Vol. 27, 2006, pp. 861–874.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.