-
1
-
-
84924218852
-
Graphene and graphene oxide as a docking station for modern drug delivery system
-
Muthoosamy K, Bai R, Manickam S. Graphene and graphene oxide as a docking station for modern drug delivery system. Curr Drug Deliv. 2014;11(6):701–18.
-
(2014)
Curr Drug Deliv
, vol.11
, Issue.6
, pp. 701-718
-
-
Muthoosamy, K.1
Bai, R.2
Manickam, S.3
-
2
-
-
84867304039
-
A roadmap for graphene
-
Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192–200.
-
(2012)
Nature
, vol.490
, Issue.7419
, pp. 192-200
-
-
Novoselov, K.S.1
Fal, V.2
Colombo, L.3
Gellert, P.4
Schwab, M.5
Kim, K.6
-
3
-
-
56149113622
-
Graphene-based ultracapacitors
-
Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498–502.
-
(2008)
Nano Lett
, vol.8
, Issue.10
, pp. 3498-3502
-
-
Stoller, M.D.1
Park, S.2
Zhu, Y.3
An, J.4
Ruoff, R.S.5
-
4
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.
-
(2008)
Nano Lett
, vol.8
, Issue.3
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
-
5
-
-
27744534165
-
Two-dimensional gas of massless Dirac fermions in graphene
-
Novoselov K, Geim AK, Morozov S, Jiang D, Grigorieva MKI, Dubonos S, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197–200.
-
(2005)
Nature
, vol.438
, Issue.7065
, pp. 197-200
-
-
Novoselov, K.1
Geim, A.K.2
Morozov, S.3
Jiang, D.4
Grigorieva, M.K.I.5
Dubonos, S.6
-
6
-
-
0010124537
-
On the atomic weight of graphite
-
Brodie BC. On the atomic weight of graphite. Philos Trans R Soc Lond. 1859;149:249–59.
-
(1859)
Philos Trans R Soc Lond
, vol.149
, pp. 249-259
-
-
Brodie, B.C.1
-
7
-
-
84981756708
-
Method for the preparation of graphitic acid
-
Staudenmaier L. Method for the preparation of graphitic acid. Ber Dtsch Chem Ges. 1898;31:1481–7.
-
(1898)
Ber Dtsch Chem Ges
, vol.31
, pp. 1481-1487
-
-
Staudenmaier, L.1
-
8
-
-
33947461960
-
Preparation of graphitic oxide
-
Hummers Jr WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339–9.
-
(1958)
J Am Chem Soc
, vol.80
, Issue.6
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
9
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.
-
(2007)
Carbon
, vol.45
, Issue.7
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
-
10
-
-
80052291340
-
Chemical preparation of graphene‐based nanomaterials and their applications in chemical and biological sensors
-
Jiang H. Chemical preparation of graphene‐based nanomaterials and their applications in chemical and biological sensors. Small. 2011;7(17):2413–27.
-
(2011)
Small
, vol.7
, Issue.17
, pp. 2413-2427
-
-
Jiang, H.1
-
11
-
-
79954657367
-
Graphene and graphene oxide: biofunctionalization and applications in biotechnology
-
Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29(5):205–12.
-
(2011)
Trends Biotechnol
, vol.29
, Issue.5
, pp. 205-212
-
-
Wang, Y.1
Li, Z.2
Wang, J.3
Li, J.4
Lin, Y.5
-
12
-
-
70350663030
-
Graphene oxide as an ideal substrate for hydrogen storage
-
Wang L, Lee K, Sun Y-Y, Lucking M, Chen Z, Zhao JJ, et al. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano. 2009;3(10):2995–3000.
-
(2009)
ACS Nano
, vol.3
, Issue.10
, pp. 2995-3000
-
-
Wang, L.1
Lee, K.2
Sun, Y.-Y.3
Lucking, M.4
Chen, Z.5
Zhao, J.J.6
-
13
-
-
78149448625
-
Determination of the local chemical structure of graphene oxide and reduced graphene oxide
-
Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater. 2010;22(40):4467–72.
-
(2010)
Adv Mater
, vol.22
, Issue.40
, pp. 4467-4472
-
-
Erickson, K.1
Erni, R.2
Lee, Z.3
Alem, N.4
Gannett, W.5
Zettl, A.6
-
14
-
-
77949880674
-
The chemistry of graphene oxide
-
Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39(1):228–40.
-
(2010)
Chem Soc Rev
, vol.39
, Issue.1
, pp. 228-240
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
Ruoff, R.S.4
-
15
-
-
33745034279
-
Evolution of surface functional groups in a series of progressively oxidized graphite oxides
-
Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater. 2006;18(11):2740–9.
-
(2006)
Chem Mater
, vol.18
, Issue.11
, pp. 2740-2749
-
-
Szabó, T.1
Berkesi, O.2
Forgó, P.3
Josepovits, K.4
Sanakis, Y.5
Petridis, D.6
-
16
-
-
78650646566
-
Graphene oxide as surfactant sheets
-
Cote LJ, Kim J, Tung VC, Luo J, Kim F, Huang J. Graphene oxide as surfactant sheets. Pure Appl Chem. 2010;83(1):95–110.
-
(2010)
Pure Appl Chem
, vol.83
, Issue.1
, pp. 95-110
-
-
Cote, L.J.1
Kim, J.2
Tung, V.C.3
Luo, J.4
Kim, F.5
Huang, J.6
-
17
-
-
78650276835
-
Graphene oxide nanocolloids
-
Luo J, Cote LJ, Tung VC, Tan AT, Goins PE, Wu J, et al. Graphene oxide nanocolloids. J Am Chem Soc. 2010;132(50):17667–9.
-
(2010)
J Am Chem Soc
, vol.132
, Issue.50
, pp. 17667-17669
-
-
Luo, J.1
Cote, L.J.2
Tung, V.C.3
Tan, A.T.4
Goins, P.E.5
Wu, J.6
-
18
-
-
77953306236
-
Graphene oxide sheets at interfaces
-
Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. Graphene oxide sheets at interfaces. J Am Chem Soc. 2010;132(23):8180–6.
-
(2010)
J Am Chem Soc
, vol.132
, Issue.23
, pp. 8180-8186
-
-
Kim, J.1
Cote, L.J.2
Kim, F.3
Yuan, W.4
Shull, K.R.5
Huang, J.6
-
19
-
-
79955688896
-
Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors
-
Aboutalebi SH, Chidembo AT, Salari M, Konstantinov K, Wexler D, Liu HK, et al. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ Sci. 2011;4(5):1855–65.
-
(2011)
Energy Environ Sci
, vol.4
, Issue.5
, pp. 1855-1865
-
-
Aboutalebi, S.H.1
Chidembo, A.T.2
Salari, M.3
Konstantinov, K.4
Wexler, D.5
Liu, H.K.6
-
20
-
-
80055030409
-
Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO 2+/VO 2+ redox couples for vanadium redox flow batteries
-
Han P, Yue Y, Liu Z, Xu W, Zhang L, Xu H, et al. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO 2+/VO 2+ redox couples for vanadium redox flow batteries. Energy Environ Sci. 2011;4(11):4710–7.
-
(2011)
Energy Environ Sci
, vol.4
, Issue.11
, pp. 4710-4717
-
-
Han, P.1
Yue, Y.2
Liu, Z.3
Xu, W.4
Zhang, L.5
Xu, H.6
-
21
-
-
84859433610
-
Water processable graphene oxide: single walled carbon nanotube composite as anode modifier for polymer solar cells
-
Kim J, Tung VC, Huang J. Water processable graphene oxide: single walled carbon nanotube composite as anode modifier for polymer solar cells. Adv Energy Mater. 2011;1(6):1052–7.
-
(2011)
Adv Energy Mater
, vol.1
, Issue.6
, pp. 1052-1057
-
-
Kim, J.1
Tung, V.C.2
Huang, J.3
-
22
-
-
77957165647
-
Preparation of scrolled graphene oxides with multi-walled carbon nanotube templates
-
Kim Y-K, Min D-H. Preparation of scrolled graphene oxides with multi-walled carbon nanotube templates. Carbon. 2010;48(15):4283–8.
-
(2010)
Carbon
, vol.48
, Issue.15
, pp. 4283-4288
-
-
Kim, Y.-K.1
Min, D.-H.2
-
23
-
-
84874992270
-
A voltammetric sensor based on GO–MWNTs hybrid nanomaterial-modified electrode for determination of carbendazim in soil and water samples
-
Luo S, Wu Y, Gou H. A voltammetric sensor based on GO–MWNTs hybrid nanomaterial-modified electrode for determination of carbendazim in soil and water samples. Ionics. 2013;19(4):673–80.
-
(2013)
Ionics
, vol.19
, Issue.4
, pp. 673-680
-
-
Luo, S.1
Wu, Y.2
Gou, H.3
-
24
-
-
84886538665
-
Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids
-
Mani V, Chen S-M, Lou B-S. Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids. Int J Electrochem Sci. 2013;8:11641–60.
-
(2013)
Int J Electrochem Sci
, vol.8
, pp. 11641-11660
-
-
Mani, V.1
Chen, S.-M.2
Lou, B.-S.3
-
25
-
-
77956632613
-
Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives
-
Qiu L, Yang X, Gou X, Yang W, Ma ZF, Wallace GG, et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem A Eur J. 2010;16(35):10653–8.
-
(2010)
Chem A Eur J
, vol.16
, Issue.35
, pp. 10653-10658
-
-
Qiu, L.1
Yang, X.2
Gou, X.3
Yang, W.4
Ma, Z.F.5
Wallace, G.G.6
-
26
-
-
77954299437
-
Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media
-
Zhang C, Ren L, Wang X, Liu T. Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J Physical Chem C. 2010;114(26):11435–40.
-
(2010)
J Physical Chem C
, vol.114
, Issue.26
, pp. 11435-11440
-
-
Zhang, C.1
Ren, L.2
Wang, X.3
Liu, T.4
-
27
-
-
84855833077
-
Biological interactions of graphene-family nanomaterials: an interdisciplinary review
-
Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2011;25(1):15–34.
-
(2011)
Chem Res Toxicol
, vol.25
, Issue.1
, pp. 15-34
-
-
Sanchez, V.C.1
Jachak, A.2
Hurt, R.H.3
Kane, A.B.4
-
28
-
-
79953880165
-
Surfactant-free water-processable photoconductive all-carbon composite
-
Tung VC, Huang J-H, Tevis I, Kim F, Kim J, Chu C-W, et al. Surfactant-free water-processable photoconductive all-carbon composite. J Am Chem Soc. 2011;133(13):4940–7.
-
(2011)
J Am Chem Soc
, vol.133
, Issue.13
, pp. 4940-4947
-
-
Tung, V.C.1
Huang, J.-H.2
Tevis, I.3
Kim, F.4
Kim, J.5
Chu, C.-W.6
-
29
-
-
84888185263
-
High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures
-
Kim KH, Yang M, Cho KM, Jun Y-S, Lee SB, Jung H-T. High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures. Sci Rep. 2013;3:3251.
-
(2013)
Sci Rep
, vol.3
, pp. 3251
-
-
Kim, K.H.1
Yang, M.2
Cho, K.M.3
Jun, Y.-S.4
Lee, S.B.5
Jung, H.-T.6
-
30
-
-
84870826065
-
Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor
-
Mani V, Devadas B, Chen S-M. Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron. 2013;41:309–15.
-
(2013)
Biosens Bioelectron
, vol.41
, pp. 309-315
-
-
Mani, V.1
Devadas, B.2
Chen, S.-M.3
-
31
-
-
84863093436
-
Towards solution processed all-carbon solar cells: a perspective. Energy
-
Tung VC, Huang J-H, Kim J, Smith AJ, Chu C-W, Huang J. Towards solution processed all-carbon solar cells: a perspective. Energy. Environ Sci. 2012;5(7):7810–8.
-
(2012)
Environ Sci
, vol.5
, Issue.7
, pp. 7810-7818
-
-
Tung, V.C.1
Huang, J.-H.2
Kim, J.3
Smith, A.J.4
Chu, C.-W.5
Huang, J.6
-
33
-
-
0038521137
-
DNA-assisted dispersion and separation of carbon nanotubes
-
Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003;2(5):338–42.
-
(2003)
Nat Mater
, vol.2
, Issue.5
, pp. 338-342
-
-
Zheng, M.1
Jagota, A.2
Semke, E.D.3
Diner, B.A.4
McLean, R.S.5
Lustig, S.R.6
-
34
-
-
84860667375
-
Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites
-
Hsiao A-E, Tsai S-Y, Hsu M-W, Chang S-J. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites. Nanoscale Res Lett. 2012;7(1):1–5.
-
(2012)
Nanoscale Res Lett
, vol.7
, Issue.1
-
-
Hsiao, A.-E.1
Tsai, S.-Y.2
Hsu, M.-W.3
Chang, S.-J.4
-
35
-
-
84887297948
-
Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells
-
Gurunathan S, Han JW, Eppakayala V, Dayem AA, Kwon D-N, Kim J-H. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells. Nanoscale Res Lett. 2013;8(1):1–13.
-
(2013)
Nanoscale Res Lett
, vol.8
, Issue.1
-
-
Gurunathan, S.1
Han, J.W.2
Eppakayala, V.3
Dayem, A.A.4
Kwon, D.-N.5
Kim, J.-H.6
-
36
-
-
84862908133
-
Thermal properties of carbon black aqueous nanofluids for solar absorption
-
Han D, Meng Z, Wu D, Zhang C, Zhu H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett. 2011;6(1):1–7.
-
(2011)
Nanoscale Res Lett
, vol.6
, Issue.1
-
-
Han, D.1
Meng, Z.2
Wu, D.3
Zhang, C.4
Zhu, H.5
-
37
-
-
84255171438
-
Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system
-
Liu M, Lin MC, Wang C. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett. 2011;6(1):1–13.
-
(2011)
Nanoscale Res Lett
, vol.6
, Issue.1
-
-
Liu, M.1
Lin, M.C.2
Wang, C.3
-
38
-
-
84857718046
-
Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions
-
Ruan B, Jacobi AM. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett. 2012;7(1):1–14.
-
(2012)
Nanoscale Res Lett
, vol.7
, Issue.1
-
-
Ruan, B.1
Jacobi, A.M.2
-
39
-
-
84864018950
-
Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene
-
Wang F, Han L, Zhang Z, Fang X, Shi J, Ma W. Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene. Nanoscale Res Lett. 2012;7(1):1–7.
-
(2012)
Nanoscale Res Lett
, vol.7
, Issue.1
-
-
Wang, F.1
Han, L.2
Zhang, Z.3
Fang, X.4
Shi, J.5
Ma, W.6
-
40
-
-
84255204830
-
Discussion on the thermal conductivity enhancement of nanofluids
-
Xie H, Yu W, Li Y, Chen L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res Lett. 2011;6(1):124.
-
(2011)
Nanoscale Res Lett
, vol.6
, Issue.1
, pp. 124
-
-
Xie, H.1
Yu, W.2
Li, Y.3
Chen, L.4
-
41
-
-
0037163994
-
Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification
-
Zhao W, Song C, Pehrsson PE. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc. 2002;124(42):12418–9.
-
(2002)
J Am Chem Soc
, vol.124
, Issue.42
, pp. 12418-12419
-
-
Zhao, W.1
Song, C.2
Pehrsson, P.E.3
-
42
-
-
0001490788
-
Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents
-
Mickelson E, Chiang I, Zimmerman J, Boul P, Lozano J, Liu J, et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J Phys Chem B. 1999;103(21):4318–22.
-
(1999)
J Phys Chem B
, vol.103
, Issue.21
, pp. 4318-4322
-
-
Mickelson, E.1
Chiang, I.2
Zimmerman, J.3
Boul, P.4
Lozano, J.5
Liu, J.6
-
43
-
-
0032475993
-
Solution properties of single-walled carbon nanotubes
-
Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, et al. Solution properties of single-walled carbon nanotubes. Science. 1998;282(5386):95–8.
-
(1998)
Science
, vol.282
, Issue.5386
, pp. 95-98
-
-
Chen, J.1
Hamon, M.A.2
Hu, H.3
Chen, Y.4
Rao, A.M.5
Eklund, P.C.6
-
44
-
-
84255168521
-
Enhanced convective heat transfer using graphene dispersed nanofluids
-
Baby TT, Ramaprabhu S. Enhanced convective heat transfer using graphene dispersed nanofluids. Nanoscale Res Lett. 2011;6(1):1–9.
-
(2011)
Nanoscale Res Lett
, vol.6
, Issue.1
-
-
Baby, T.T.1
Ramaprabhu, S.2
-
45
-
-
27844557528
-
Chemically functionalized carbon nanotubes
-
Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1(2):180–92.
-
(2005)
Small
, vol.1
, Issue.2
, pp. 180-192
-
-
Balasubramanian, K.1
Burghard, M.2
-
46
-
-
84893224964
-
Thermal transport in graphene oxide–from ballistic extreme to amorphous limit
-
Mu X, Wu X, Zhang T, Go DB, Luo T. Thermal transport in graphene oxide–from ballistic extreme to amorphous limit. Sci Rep. 2014;4:3909.
-
(2014)
Sci Rep
, vol.4
, pp. 3909
-
-
Mu, X.1
Wu, X.2
Zhang, T.3
Go, D.B.4
Luo, T.5
-
47
-
-
0242319612
-
Individually suspended single-walled carbon nanotubes in various surfactants
-
Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003;3(10):1379–82.
-
(2003)
Nano Lett
, vol.3
, Issue.10
, pp. 1379-1382
-
-
Moore, V.C.1
Strano, M.S.2
Haroz, E.H.3
Hauge, R.H.4
Smalley, R.E.5
Schmidt, J.6
-
48
-
-
0037967030
-
Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors
-
Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci. 2003;100(9):4984–9.
-
(2003)
Proc Natl Acad Sci
, vol.100
, Issue.9
, pp. 4984-4989
-
-
Chen, R.J.1
Bangsaruntip, S.2
Drouvalakis, K.A.3
Kam, N.W.S.4
Shim, M.5
Li, Y.6
-
49
-
-
84905050848
-
An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes
-
Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, et al. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett. 2014;9(1):151.
-
(2014)
Nanoscale Res Lett
, vol.9
, Issue.1
, pp. 151
-
-
Sadri, R.1
Ahmadi, G.2
Togun, H.3
Dahari, M.4
Kazi, S.N.5
Sadeghinezhad, E.6
-
50
-
-
84862931995
-
The application of carbon nanotubes in target drug delivery systems for cancer therapies
-
Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6(1):1–22.
-
(2011)
Nanoscale Res Lett
, vol.6
, Issue.1
-
-
Zhang, W.1
Zhang, Z.2
Zhang, Y.3
-
51
-
-
85127771535
-
Practical Productions of Graphene, Supply and Cost, in Applications of Graphene
-
Wolf E. Practical Productions of Graphene, Supply and Cost, in Applications of Graphene. Springer; 2014. p. 19–38.
-
(2014)
Springer
, pp. 19-38
-
-
Wolf, E.1
-
52
-
-
77956867182
-
Stable aqueous suspension and self-assembly of graphite nanoplatelets coated with various polyelectrolytes
-
Lu J, Do I, Fukushima H, Lee I, Drzal LT. Stable aqueous suspension and self-assembly of graphite nanoplatelets coated with various polyelectrolytes. J Nanomaterials. 2010;2010:2.
-
(2010)
J Nanomaterials
, vol.2010
, pp. 2
-
-
Lu, J.1
Do, I.2
Fukushima, H.3
Lee, I.4
Drzal, L.T.5
-
54
-
-
14844342863
-
Real-time observation of the expansion behavior of intercalated graphite flake
-
Lee S, Cho D, Drzal L. Real-time observation of the expansion behavior of intercalated graphite flake. J Mater Sci. 2005;40(1):231–4.
-
(2005)
J Mater Sci
, vol.40
, Issue.1
, pp. 231-234
-
-
Lee, S.1
Cho, D.2
Drzal, L.3
-
55
-
-
84862796021
-
High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system
-
Jeon J, Jeong S-G, Lee J-H, Seo J, Kim S. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Solar Energy Mater Solar Cells. 2012;101:51–6.
-
(2012)
Solar Energy Mater Solar Cells
, vol.101
, pp. 51-56
-
-
Jeon, J.1
Jeong, S.-G.2
Lee, J.-H.3
Seo, J.4
Kim, S.5
-
56
-
-
84930234777
-
-
Expanded graphite and products produced therefrom, Google Patents
-
Drzal L, Fukushima H. Expanded graphite and products produced therefrom. 2003. Google Patents.
-
(2003)
Fukushima H
-
-
Drzal, L.1
-
58
-
-
79955687967
-
Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets
-
Kavan L, Yum JH, Grätzel M. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano. 2010;5(1):165–72.
-
(2010)
ACS Nano
, vol.5
, Issue.1
, pp. 165-172
-
-
Kavan, L.1
Yum, J.H.2
Grätzel, M.3
-
60
-
-
0023569512
-
Exfoliation of graphite
-
Chung D. Exfoliation of graphite. J Mater Sci. 1987;22(12):4190–8.
-
(1987)
J Mater Sci
, vol.22
, Issue.12
, pp. 4190-4198
-
-
Chung, D.1
-
61
-
-
34249728197
-
Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets
-
Kalaitzidou K, Fukushima H, Drzal LT. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon. 2007;45(7):1446–52.
-
(2007)
Carbon
, vol.45
, Issue.7
, pp. 1446-1452
-
-
Kalaitzidou, K.1
Fukushima, H.2
Drzal, L.T.3
-
62
-
-
79951513034
-
Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites
-
Biswas S, Fukushima H, Drzal LT. Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites. Composites Part A: Applied Sci Manufact. 2011;42(4):371–5.
-
(2011)
Composites Part A: Applied Sci Manufact
, vol.42
, Issue.4
, pp. 371-375
-
-
Biswas, S.1
Fukushima, H.2
Drzal, L.T.3
-
63
-
-
84892540487
-
Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets
-
Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MNBM, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9(1):1–12.
-
(2014)
Nanoscale Res Lett
, vol.9
, Issue.1
-
-
Mehrali, M.1
Sadeghinezhad, E.2
Latibari, S.T.3
Kazi, S.N.4
Mehrali, M.5
Zubir, M.N.B.M.6
-
64
-
-
84871565357
-
Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube–graphene nanoplatelet hybrid sheets
-
Hwang S-H, Park HW, Park Y-B. Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube–graphene nanoplatelet hybrid sheets. Smart Materials Structures. 2013;22(1):015013.
-
(2013)
Smart Materials Structures
, vol.22
, Issue.1
, pp. 015013
-
-
Hwang, S.-H.1
Park, H.W.2
Park, Y.-B.3
-
65
-
-
78650246689
-
Thermal conductivity of exfoliated graphite nanoplatelet paper
-
Xiang J, Drzal LT. Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon. 2011;49(3):773–8.
-
(2011)
Carbon
, vol.49
, Issue.3
, pp. 773-778
-
-
Xiang, J.1
Drzal, L.T.2
-
66
-
-
84930234779
-
-
xGnP Technical Data Sheet. DOI:
-
xGnP Technical Data Sheet. DOI: http://xgsciences.com/wp-content/uploads/2012/10/10-15-13_xGnP-C_Data-Sheet.pdf.
-
-
-
-
67
-
-
84902665838
-
Polystyrene grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups
-
Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M. Polystyrene grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Advances. 2014.
-
(2014)
RSC Advances
-
-
Roghani-Mamaqani, H.1
Haddadi-Asl, V.2
Khezri, K.3
Salami-Kalajahi, M.4
-
68
-
-
0000709787
-
Influences of density and flake size on the mechanical properties of flexible graphite
-
Leng Y, Gu J, Cao W, Zhang T-Y. Influences of density and flake size on the mechanical properties of flexible graphite. Carbon. 1998;36(7):875–81.
-
(1998)
Carbon
, vol.36
, Issue.7
, pp. 875-881
-
-
Leng, Y.1
Gu, J.2
Cao, W.3
Zhang, T.-Y.4
-
69
-
-
33746419650
-
Thermal conductivity of exfoliated graphite nanocomposites
-
Fukushima H, Drzal L, Rook B, Rich M. Thermal conductivity of exfoliated graphite nanocomposites. J Thermal Analysis Calorimetry. 2006;85(1):235–8.
-
(2006)
J Thermal Analysis Calorimetry
, vol.85
, Issue.1
, pp. 235-238
-
-
Fukushima, H.1
Drzal, L.2
Rook, B.3
Rich, M.4
-
70
-
-
79955484375
-
Investigation of exfoliated graphite nanoplatelets (< i > x GnP) in improving thermal conductivity of paraffin wax-based phase change material
-
Xiang J, Drzal LT. Investigation of exfoliated graphite nanoplatelets (< i > x GnP) in improving thermal conductivity of paraffin wax-based phase change material. Solar Energy Mater Solar Cells. 2011;95(7):1811–8.
-
(2011)
Solar Energy Mater Solar Cells
, vol.95
, Issue.7
, pp. 1811-1818
-
-
Xiang, J.1
Drzal, L.T.2
-
71
-
-
33845197534
-
Nylon-exfoliated graphite nanoplatelet (xGnP) nanocomposites with enhanced mechanical, electrical and thermal properties
-
Fukushima H, Drzal LT. Nylon-exfoliated graphite nanoplatelet (xGnP) nanocomposites with enhanced mechanical, electrical and thermal properties. in NSTI Nanotech. 2006.
-
(2006)
in NSTI Nanotech
-
-
Fukushima, H.1
Drzal, L.T.2
-
73
-
-
55049103289
-
Intact pattern transfer of conductive exfoliated graphite nanoplatelet composite films to polyelectrolyte multilayer platforms
-
Hendricks TR, Lu J, Drzal LT, Lee I. Intact pattern transfer of conductive exfoliated graphite nanoplatelet composite films to polyelectrolyte multilayer platforms. Adv Mater. 2008;20(10):2008–12.
-
(2008)
Adv Mater
, vol.20
, Issue.10
, pp. 2008-2012
-
-
Hendricks, T.R.1
Lu, J.2
Drzal, L.T.3
Lee, I.4
-
74
-
-
38049153063
-
Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane
-
Lu J, Drzal LT, Worden RM, Lee I. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem Mater. 2007;19(25):6240–6.
-
(2007)
Chem Mater
, vol.19
, Issue.25
, pp. 6240-6246
-
-
Lu, J.1
Drzal, L.T.2
Worden, R.M.3
Lee, I.4
-
76
-
-
70349596328
-
Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems
-
Kim S, Drzal LT. Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems. J Adhesion Sci Technol. 2009;23(12):1623–38.
-
(2009)
J Adhesion Sci Technol
, vol.23
, Issue.12
, pp. 1623-1638
-
-
Kim, S.1
Drzal, L.T.2
-
77
-
-
84930196999
-
-
East Lansing, Michigan
-
Do I-H. Metal Decoration of exfoliated graphite nanoplatelets (xGnP) for fuel cell applications, Ph.D. Dissertation; Michigan State University, 2006, East Lansing, Michigan.
-
(2006)
Michigan State University
-
-
-
78
-
-
79960214736
-
Reversible tuning of the wettability of carbon nanotube arrays: the effect of ultraviolet/ozone and vacuum pyrolysis treatments
-
Aria AI, Gharib M. Reversible tuning of the wettability of carbon nanotube arrays: the effect of ultraviolet/ozone and vacuum pyrolysis treatments. Langmuir. 2011;27(14):9005–11.
-
(2011)
Langmuir
, vol.27
, Issue.14
, pp. 9005-9011
-
-
Aria, A.I.1
Gharib, M.2
-
79
-
-
61649108842
-
A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid − liquid interface
-
Biswas S, Drzal LT. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid − liquid interface. Nano Lett. 2008;9(1):167–72.
-
(2008)
Nano Lett
, vol.9
, Issue.1
, pp. 167-172
-
-
Biswas, S.1
Drzal, L.T.2
-
81
-
-
48449090154
-
Synthesis of water soluble graphene
-
Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett. 2008;8(6):1679–82.
-
(2008)
Nano Lett
, vol.8
, Issue.6
, pp. 1679-1682
-
-
Si, Y.1
Samulski, E.T.2
-
82
-
-
84871114900
-
Graphene oxide dispersed carbon nanotube and iron phthalocyanine composite modified electrode for the electrocatalytic determination of hydrazine
-
Mani V, Vilian AE, Chen S-M. Graphene oxide dispersed carbon nanotube and iron phthalocyanine composite modified electrode for the electrocatalytic determination of hydrazine. Int J Electrochem Sci. 2012;7:12774–85.
-
(2012)
Int J Electrochem Sci
, vol.7
, pp. 12774-12785
-
-
Mani, V.1
Vilian, A.E.2
Chen, S.-M.3
-
83
-
-
78649555817
-
Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation
-
Zhang LL, Xiong Z, Zhao X. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano. 2010;4(11):7030–6.
-
(2010)
ACS Nano
, vol.4
, Issue.11
, pp. 7030-7036
-
-
Zhang, L.L.1
Xiong, Z.2
Zhao, X.3
-
84
-
-
0035951231
-
Nanoparticle engineering of complex fluid behavior
-
Tohver V, Chan A, Sakurada O, Lewis JA. Nanoparticle engineering of complex fluid behavior. Langmuir. 2001;17(26):8414–21.
-
(2001)
Langmuir
, vol.17
, Issue.26
, pp. 8414-8421
-
-
Tohver, V.1
Chan, A.2
Sakurada, O.3
Lewis, J.A.4
-
85
-
-
0035979228
-
Nanoparticle halos: a new colloid stabilization mechanism
-
Tohver V, Smay JE, Braem A, Braun PV, Lewis JA. Nanoparticle halos: a new colloid stabilization mechanism. Proc Natl Acad Sci. 2001;98(16):8950–4.
-
(2001)
Proc Natl Acad Sci
, vol.98
, Issue.16
, pp. 8950-8954
-
-
Tohver, V.1
Smay, J.E.2
Braem, A.3
Braun, P.V.4
Lewis, J.A.5
-
86
-
-
78650092372
-
Improved synthesis of graphene oxide
-
Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806–14.
-
(2010)
ACS Nano
, vol.4
, Issue.8
, pp. 4806-4814
-
-
Marcano, D.C.1
Kosynkin, D.V.2
Berlin, J.M.3
Sinitskii, A.4
Sun, Z.5
Slesarev, A.6
-
87
-
-
84862850747
-
Simple room-temperature preparation of high-yield large-area graphene oxide
-
Huang NM, Lim H, Chia C, Yarmo M, Muhamad M. Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomedicine. 2011;6:3443.
-
(2011)
Int J Nanomedicine
, vol.6
, pp. 3443
-
-
Huang, N.M.1
Lim, H.2
Chia, C.3
Yarmo, M.4
Muhamad, M.5
-
88
-
-
84855992297
-
Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth
-
Lim HN, Huang NM, Lim S, Harrison I, Chia C. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomedicine. 2011;6:1817.
-
(2011)
Int J Nanomedicine
, vol.6
, pp. 1817
-
-
Lim, H.N.1
Huang, N.M.2
Lim, S.3
Harrison, I.4
Chia, C.5
-
89
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.6
-
90
-
-
0032642626
-
Tailoring graphite with the goal of achieving single sheets
-
Lu X, Yu M, Huang H, Ruoff RS. Tailoring graphite with the goal of achieving single sheets. Nanotechnology. 1999;10(3):269.
-
(1999)
Nanotechnology
, vol.10
, Issue.3
, pp. 269
-
-
Lu, X.1
Yu, M.2
Huang, H.3
Ruoff, R.S.4
-
91
-
-
37549052862
-
Graphene physics in graphite
-
Kopelevich Y, Esquinazi P. Graphene physics in graphite. Adv Mater. 2007;19(24):4559–63.
-
(2007)
Adv Mater
, vol.19
, Issue.24
, pp. 4559-4563
-
-
Kopelevich, Y.1
Esquinazi, P.2
-
92
-
-
65249111782
-
Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents
-
Park S, An J, Jung I, Piner RD, An SJ, Li X, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009;9(4):1593–7.
-
(2009)
Nano Lett
, vol.9
, Issue.4
, pp. 1593-1597
-
-
Park, S.1
An, J.2
Jung, I.3
Piner, R.D.4
An, S.J.5
Li, X.6
-
93
-
-
34547199896
-
Preparation and characterization of graphene oxide paper
-
Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.
-
(2007)
Nature
, vol.448
, Issue.7152
, pp. 457-460
-
-
Dikin, D.A.1
Stankovich, S.2
Zimney, E.J.3
Piner, R.D.4
Dommett, G.H.5
Evmenenko, G.6
-
94
-
-
84930234783
-
-
Characterization of xGnP® Grade C Materials [cited 2014 31 September]. DOI:
-
Characterization of xGnP® Grade C Materials [cited 2014 31 September]. DOI: http://xgsciences.com/wp-content/uploads/2012/10/Characterization-of-Grade-C-xGnP-04-30-2012-2.pdf
-
-
-
-
95
-
-
77957150650
-
Unusual infrared-absorption mechanism in thermally reduced graphene oxide
-
Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal Y. Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat Mater. 2010;9(10):840–5.
-
(2010)
Nat Mater
, vol.9
, Issue.10
, pp. 840-845
-
-
Acik, M.1
Lee, G.2
Mattevi, C.3
Chhowalla, M.4
Cho, K.5
Chabal, Y.6
-
96
-
-
38949108623
-
Processable aqueous dispersions of graphene nanosheets
-
Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3(2):101–5.
-
(2008)
Nat Nanotechnol
, vol.3
, Issue.2
, pp. 101-105
-
-
Li, D.1
Müller, M.B.2
Gilje, S.3
Kaner, R.B.4
Wallace, G.G.5
-
97
-
-
84905675061
-
Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions
-
Sadeghinezhad E, Mehrali M, Tahan Latibari S, Mehrali M, Kazi S, Oon CS, et al. Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions. Ind Eng Chem Res. 2014;53(31):12455–65.
-
(2014)
Ind Eng Chem Res
, vol.53
, Issue.31
, pp. 12455-12465
-
-
Sadeghinezhad, E.1
Mehrali, M.2
Tahan Latibari, S.3
Mehrali, M.4
Kazi, S.5
Oon, C.S.6
-
98
-
-
56949104599
-
Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy
-
Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47(1):145–52.
-
(2009)
Carbon
, vol.47
, Issue.1
, pp. 145-152
-
-
Yang, D.1
Velamakanni, A.2
Bozoklu, G.3
Park, S.4
Stoller, M.5
Piner, R.D.6
-
99
-
-
0014829099
-
Raman spectrum of graphite
-
Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53(3):1126–30.
-
(1970)
J Chem Phys
, vol.53
, Issue.3
, pp. 1126-1130
-
-
Tuinstra, F.1
Koenig, J.L.2
-
100
-
-
38749134828
-
Raman spectra of graphite oxide and functionalized graphene sheets
-
Kudin KN, Ozbas B, Schniepp HC, Prud'Homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8(1):36–41.
-
(2008)
Nano Lett
, vol.8
, Issue.1
, pp. 36-41
-
-
Kudin, K.N.1
Ozbas, B.2
Schniepp, H.C.3
Prud'Homme, R.K.4
Aksay, I.A.5
Car, R.6
-
101
-
-
84872147280
-
Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite
-
Mehrali M, Latibari ST, Mehrali M, Metselaar HSC, Silakhori M. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Conversion Manag. 2013;67:275–82.
-
(2013)
Energy Conversion Manag
, vol.67
, pp. 275-282
-
-
Mehrali, M.1
Latibari, S.T.2
Mehrali, M.3
Metselaar, H.S.C.4
Silakhori, M.5
-
102
-
-
84862826342
-
Restoration of graphene from graphene oxide by defect repair
-
Cheng M, Yang R, Zhang L, Shi Z, Yang W, Wang D, et al. Restoration of graphene from graphene oxide by defect repair. Carbon. 2012;50(7):2581–7.
-
(2012)
Carbon
, vol.50
, Issue.7
, pp. 2581-2587
-
-
Cheng, M.1
Yang, R.2
Zhang, L.3
Shi, Z.4
Yang, W.5
Wang, D.6
-
103
-
-
67651224881
-
Solvothermal reduction of chemically exfoliated graphene sheets
-
Wang H, Robinson JT, Li X, Dai H. Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc. 2009;131(29):9910–1.
-
(2009)
J Am Chem Soc
, vol.131
, Issue.29
, pp. 9910-9911
-
-
Wang, H.1
Robinson, J.T.2
Li, X.3
Dai, H.4
-
104
-
-
77957119241
-
Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids
-
Pei S, Zhao J, Du J, Ren W, Cheng H-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48(15):4466–74.
-
(2010)
Carbon
, vol.48
, Issue.15
, pp. 4466-4474
-
-
Pei, S.1
Zhao, J.2
Du, J.3
Ren, W.4
Cheng, H.-M.5
-
105
-
-
77958036101
-
High-concentration zeta potential measurements using light-scattering techniques. Philos TransA Math Phys
-
Kaszuba M, Corbett J, Watson FM, Jones A. High-concentration zeta potential measurements using light-scattering techniques. Philos TransA Math Phys. Eng Sci. 2010;368(1927):4439–51.
-
(2010)
Eng Sci
, vol.368
, Issue.1927
, pp. 4439-4451
-
-
Kaszuba, M.1
Corbett, J.2
Watson, F.M.3
Jones, A.4
-
106
-
-
84857358811
-
Manipulating microparticle interactions using highly charged nanoparticles
-
Ji S, Herman D, Walz JY. Manipulating microparticle interactions using highly charged nanoparticles. Colloids Surf A Physicochem Eng Asp. 2012;396:51–62.
-
(2012)
Colloids Surf A Physicochem Eng Asp
, vol.396
, pp. 51-62
-
-
Ji, S.1
Herman, D.2
Walz, J.Y.3
-
107
-
-
84878229332
-
Stabilization of weakly charged microparticles using highly charged nanoparticles
-
Herman D, Walz JY. Stabilization of weakly charged microparticles using highly charged nanoparticles. Langmuir. 2013;29(20):5982–94.
-
(2013)
Langmuir
, vol.29
, Issue.20
, pp. 5982-5994
-
-
Herman, D.1
Walz, J.Y.2
-
108
-
-
4944240285
-
Dispersion behavior and stabilization mechanism of alumina powders in silica sol
-
Kong D, Yang H, Yang Y, Wei S, Wang J, Cheng B. Dispersion behavior and stabilization mechanism of alumina powders in silica sol. Mater Lett. 2004;58(27):3503–8.
-
(2004)
Mater Lett
, vol.58
, Issue.27
, pp. 3503-3508
-
-
Kong, D.1
Yang, H.2
Yang, Y.3
Wei, S.4
Wang, J.5
Cheng, B.6
-
109
-
-
4143065742
-
Dispersing carbon nanotubes in water: a noncovalent and nonorganic way
-
Zhu J, Yudasaka M, Zhang M, Iijima S. Dispersing carbon nanotubes in water: a noncovalent and nonorganic way. J Phys Chem B. 2004;108(31):11317–20.
-
(2004)
J Phys Chem B
, vol.108
, Issue.31
, pp. 11317-11320
-
-
Zhu, J.1
Yudasaka, M.2
Zhang, M.3
Iijima, S.4
-
110
-
-
84869465813
-
Stabilization of colloidal suspensions: competing effects of nanoparticle halos and depletion mechanism
-
Xing X, Sun G, Li Z, Ngai T. Stabilization of colloidal suspensions: competing effects of nanoparticle halos and depletion mechanism. Langmuir. 2012;28(46):16022–8.
-
(2012)
Langmuir
, vol.28
, Issue.46
, pp. 16022-16028
-
-
Xing, X.1
Sun, G.2
Li, Z.3
Ngai, T.4
-
111
-
-
80054876000
-
Interaction forces between colloidal particles in a solution of like-charged, adsorbing nanoparticles
-
McKee CT, Walz JY. Interaction forces between colloidal particles in a solution of like-charged, adsorbing nanoparticles. J Colloid Interface Sci. 2012;365(1):72–80.
-
(2012)
J Colloid Interface Sci
, vol.365
, Issue.1
, pp. 72-80
-
-
McKee, C.T.1
Walz, J.Y.2
-
112
-
-
55549140506
-
Size ratio effects on interparticle interactions and phase behavior of microsphere − nanoparticle mixtures
-
Chan AT. Size ratio effects on interparticle interactions and phase behavior of microsphere − nanoparticle mixtures. Langmuir. 2008;24(20):11399–405.
-
(2008)
Langmuir
, vol.24
, Issue.20
, pp. 11399-11405
-
-
Chan, A.T.1
-
114
-
-
25844493699
-
Electrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures
-
Chan AT, Lewis JA. Electrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures. Langmuir. 2005;21(19):8576–9.
-
(2005)
Langmuir
, vol.21
, Issue.19
, pp. 8576-8579
-
-
Chan, A.T.1
Lewis, J.A.2
-
115
-
-
84878069897
-
Decoration of microparticles by highly charged nanoparticles
-
Huang H, Ruckenstein E. Decoration of microparticles by highly charged nanoparticles. J Phys Chem B. 2013;117(20):6318–22.
-
(2013)
J Phys Chem B
, vol.117
, Issue.20
, pp. 6318-6322
-
-
Huang, H.1
Ruckenstein, E.2
-
116
-
-
33750500042
-
Halos mechanism in stabilizing of colloidal suspensions: nanoparticle weight fraction and pH effects
-
Karimian H, Babaluo A. Halos mechanism in stabilizing of colloidal suspensions: nanoparticle weight fraction and pH effects. J Eur Ceramic Soc. 2007;27(1):19–25.
-
(2007)
J Eur Ceramic Soc
, vol.27
, Issue.1
, pp. 19-25
-
-
Karimian, H.1
Babaluo, A.2
|