메뉴 건너뛰기




Volumn 29, Issue 4, 2015, Pages 624-642

Co-clustering geo-referenced time series: exploring spatio-temporal patterns in Dutch temperature data

Author keywords

co clustering; geo referenced time series; geovisualization; spatio temporal pattern; temperature

Indexed keywords

AIR TEMPERATURE; ALGORITHM; GIS; SPATIOTEMPORAL ANALYSIS; TIME SERIES; VISUALIZATION;

EID: 84930041696     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2014.994520     Document Type: Article
Times cited : (34)

References (30)
  • 1
    • 57349141917 scopus 로고    scopus 로고
    • Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, New York: ACM
    • Anagnostopoulos, A., Dasgupta, A., and Kumar, R., 2008. Approximation algorithms for co-clustering. In: Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems. New York: ACM, 201–210.
    • (2008) Approximation algorithms for co-clustering , pp. 201-210
    • Anagnostopoulos, A.1    Dasgupta, A.2    Kumar, R.3
  • 2
    • 72849142812 scopus 로고    scopus 로고
    • IEEE symposium on visual analytics science and technology (VAST), October
    • Andrienko, G., et al. 2009. Interactive visual clustering of large collections of trajectories. In: IEEE symposium on visual analytics science and technology (VAST), 12–13October, Atlantic City, NJ. New York: IEEE, 3–10.
    • (2009) Interactive visual clustering of large collections of trajectories , pp. 3-10
    • Andrienko, G.1
  • 3
    • 77955752962 scopus 로고    scopus 로고
    • Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns
    • Andrienko, G., et al., 2010a. Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Computer Graphics Forum, 29 (3), 913–922. doi:10.1111/j.1467-8659.2009.01664.x
    • (2010) Computer Graphics Forum , vol.29 , Issue.3 , pp. 913-922
    • Andrienko, G.1
  • 5
    • 34548691246 scopus 로고    scopus 로고
    • A generalized maximum entropy approach to bregman co-clustering and matrix approximation
    • Banerjee, A., et al., 2007. A generalized maximum entropy approach to bregman co-clustering and matrix approximation. Journal of Machine Learning Research, 8, 1919–1986.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1919-1986
    • Banerjee, A.1
  • 7
    • 2942588999 scopus 로고    scopus 로고
    • Fourth SIAM international conference on data mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 114–125
    • Cho, H., et al., 2004. Minimum sum-squared residue co-clustering of gene expression data. In: Fourth SIAM international conference on data mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 114–125.
    • (2004) Minimum sum-squared residue co-clustering of gene expression data
    • Cho, H.1
  • 8
    • 84930054196 scopus 로고    scopus 로고
    • “Persistent problems in geographic visualization” (ICC2011), Paris. Berlin: Springer-Verlag:
    • Coltekin, A., et al., 2011. Modifiable temporal unit problem. In: ISPRS/ICA workshop “Persistent problems in geographic visualization” (ICC2011), Paris. Berlin: Springer-Verlag.
    • (2011) Modifiable temporal unit problem. In: ISPRS/ICA workshop
    • Coltekin, A.1
  • 9
    • 0347765758 scopus 로고    scopus 로고
    • Clustering and upscaling of station precipitation records to regional patterns using self-organizing maps (SOMs)
    • Crane, R.G. and Hewitson, B.C., 2003. Clustering and upscaling of station precipitation records to regional patterns using self-organizing maps (SOMs). Climate Research, 25, 95–107. doi:10.3354/cr025095
    • (2003) Climate Research , vol.25 , pp. 95-107
    • Crane, R.G.1    Hewitson, B.C.2
  • 10
    • 84885018349 scopus 로고    scopus 로고
    • A general method of spatio-temporal clustering analysis
    • Deng, M., et al., 2011. A general method of spatio-temporal clustering analysis. Science China Information Sciences, 56 (10), 1–14. doi:10.1007/s11432-011-4391-8
    • (2011) Science China Information Sciences , vol.56 , Issue.10 , pp. 1-14
    • Deng, M.1
  • 11
    • 77952375075 scopus 로고    scopus 로고
    • The 9th international conference on knowledge discovery and data mining (KDD)
    • Dhillon, I.S., Mallela, S., and Modha, D.S., 2003. Information-theoretic co-clustering. In: The 9th international conference on knowledge discovery and data mining (KDD), 24–27 August, Washington, DC. New York: ACM, 89–98.
    • (2003) Information-theoretic co-clustering , pp. 89-98
    • Dhillon, I.S.1    Mallela, S.2    Modha, D.S.3
  • 13
    • 33749527341 scopus 로고    scopus 로고
    • A visualization system for space-time and multivariate patterns (VIS-STAMP)
    • Guo, D., et al., 2006. A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Transactions on Visualization and Computer Graphics, 12 (6), 1461–1474. doi:10.1109/TVCG.2006.84
    • (2006) IEEE Transactions on Visualization and Computer Graphics , vol.12 , Issue.6 , pp. 1461-1474
    • Guo, D.1
  • 14
    • 84886875551 scopus 로고    scopus 로고
    • Hierarchical self-organizing maps for clustering spatiotemporal data
    • Hagenauer, J. and Helbich, M., 2013. Hierarchical self-organizing maps for clustering spatiotemporal data. International Journal of Geographical Information Science, 27 (10), 2026–2042. doi:10.1080/13658816.2013.788249
    • (2013) International Journal of Geographical Information Science , vol.27 , Issue.10 , pp. 2026-2042
    • Hagenauer, J.1    Helbich, M.2
  • 17
    • 84938353292 scopus 로고    scopus 로고
    • An overview of clustering methods in geographic data analysis
    • Miller H.J., Han J., (eds), 2nd ed., New York: Taylor & Francis Group
    • Han, J., Lee, J.-G., and Kamber, M., 2009. An overview of clustering methods in geographic data analysis. In: H.J. Miller and J. Han, eds. Geographic data mining and knowledge discovery. 2nd ed. New York: Taylor & Francis Group, 150–187.
    • (2009) Geographic data mining and knowledge discovery , pp. 150-187
    • Han, J.1    Lee, J.-G.2    Kamber, M.3
  • 18
    • 84863714383 scopus 로고    scopus 로고
    • Linear trends in seasonal vegetation time series and the modifiable temporal unit problem
    • Jong, R.D. and Bruin, S.D., 2012. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences, 9, 71–77. doi:10.5194/bg-9-71-2012
    • (2012) Biogeosciences , vol.9 , pp. 71-77
    • Jong, R.D.1    Bruin, S.D.2
  • 22
    • 84885227958 scopus 로고    scopus 로고
    • Explore multivariable spatio-temporal data with the time wave: case study on meteorological data
    • Yeh A.G.O., (ed), Berlin: Springer
    • Li, X., et al., 2012. Explore multivariable spatio-temporal data with the time wave: case study on meteorological data. In: A.G.O. Yeh et al., ed. Advances in spatial data handling and GIS. Lecture notes in geoinformation and cartography, part 3. Berlin: Springer, 79–92. doi:10.1007/978-3-642-25926-5_7
    • (2012) Advances in spatial data handling and GIS. Lecture notes in geoinformation and cartography, part 3 , pp. 79-92
    • Li, X.1
  • 24
    • 84926403412 scopus 로고    scopus 로고
    • Geographic data mining and knowledge discovery: an overview
    • Miller H.J., Han J., (eds), 2nd, ed. London: Taylor & Francis Group
    • Miller, H.J. and Han, J., 2009. Geographic data mining and knowledge discovery: an overview. In: H.J. Miller and J. Han, eds. Geographic data mining and knowledge discovery. 2nd ed. London: Taylor & Francis Group, 1–26.
    • (2009) Geographic data mining and knowledge discovery , pp. 1-26
    • Miller, H.J.1    Han, J.2
  • 25
    • 44949125774 scopus 로고    scopus 로고
    • Mining geographic episode association patterns of abnormal events in global earth science data
    • Wu, T., et al., 2008. Mining geographic episode association patterns of abnormal events in global earth science data. Science in China Series E: Technological Sciences, 51 (S1), 155–164. doi:10.1007/s11431-008-5008-3
    • (2008) Science in China Series E: Technological Sciences , vol.51 , Issue.S1 , pp. 155-164
    • Wu, T.1
  • 26
    • 84881618125 scopus 로고    scopus 로고
    • Visual discovery of synchronisation in weather data at multiple temporal resolutions
    • Wu, X., Zurita-Milla, R., and Kraak, M.-J., 2013. Visual discovery of synchronisation in weather data at multiple temporal resolutions. The Cartographic Journal, 50 (3), 247–256. doi:10.1179/1743277413Y.0000000067
    • (2013) The Cartographic Journal , vol.50 , Issue.3 , pp. 247-256
    • Wu, X.1    Zurita-Milla, R.2    Kraak, M.-J.3
  • 27
    • 7444259111 scopus 로고    scopus 로고
    • Correlation analysis of spatial time series datasets: a filter-and-refine approach
    • Whang K.-Y., (ed), Berlin: Springer
    • Zhang, P., et al., 2003. Correlation analysis of spatial time series datasets: a filter-and-refine approach. In: K.-Y. Whang et al., eds. Advances in knowledge discovery and data mining. Berlin: Springer, 532–544.
    • (2003) Advances in knowledge discovery and data mining , pp. 532-544
    • Zhang, P.1
  • 28
    • 52949143065 scopus 로고    scopus 로고
    • Activities, ringmaps and geovisualization of large human movement fields
    • Zhao, J., Forer, P., and Harvey, A.S., 2008. Activities, ringmaps and geovisualization of large human movement fields. Information Visualization, 7 (3–4), 198–209. doi:10.1057/palgrave.ivs.9500184
    • (2008) Information Visualization , vol.7 , Issue.3-4 , pp. 198-209
    • Zhao, J.1    Forer, P.2    Harvey, A.S.3
  • 30
    • 84875733897 scopus 로고    scopus 로고
    • Exploring spatiotemporal phenological patterns and trajectories using self-organizing maps
    • Zurita-Milla, R., et al., 2013. Exploring spatiotemporal phenological patterns and trajectories using self-organizing maps. IEEE Transactions on Geoscience and Remote Sensing, 51 (4), 1914–1921. doi:10.1109/TGRS.2012.2223218
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.4 , pp. 1914-1921
    • Zurita-Milla, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.