메뉴 건너뛰기




Volumn , Issue , 2009, Pages 149-188

An overview of clustering methods in geographic data analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84938353292     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9781420073980     Document Type: Chapter
Times cited : (36)

References (23)
  • 2
    • 0032131450 scopus 로고    scopus 로고
    • Convergence of an EM-type algorithm for spatial clustering
    • C. Ambroise, and G. Govaert. Convergence of an EM-type algorithm for spatial clustering. Pattern Recognition Letters, 19: 919-927, 1998.
    • (1998) Pattern Recognition Letters , vol.19 , pp. 919-927
    • Ambroise, C.1    Govaert, G.2
  • 4
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial of the EM algorithm, and its applications to parameter estimation for Gaussian mixture, and hidden Markov models
    • International Computer Science Institute
    • J. A. Bilmes. A gentle tutorial of the EM algorithm, and its applications to parameter estimation for Gaussian mixture, and hidden Markov models. In Technical Report, International Computer Science Institute, 1998.
    • (1998) Technical Report
    • Bilmes, J.A.1
  • 5
    • 84866023472 scopus 로고    scopus 로고
    • Cluster analysis of western north pacific tropical cyclone tracks
    • International Research Institute for Climate, and Society, Columbia University
    • S. Camargo, A. Robertson, S. Gaffney, P. Smyth, and M. Ghil. Cluster analysis of western north pacific tropical cyclone tracks. In Technical Report, International Research Institute for Climate, and Society, Columbia University, 2005.
    • (2005) Technical Report
    • Camargo, S.1    Robertson, A.2    Gaffney, S.3    Smyth, P.4    Ghil, M.5
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistical Society, 39: 1-38, 1977.
    • (1977) J. Royal Statistical Society , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 8
    • 0010386990 scopus 로고    scopus 로고
    • Amoeba: Hierarchical clustering based on spatial proximity using delaunaty diagram
    • Beijing, China, August
    • V. Estivill-Castro, and I. Lee. Amoeba: Hierarchical clustering based on spatial proximity using delaunaty diagram. In Proc. 9th Intl. Symp. Spatial Data Handling (SDH’00), Beijing, China, August 2000, pp. 26-41.
    • (2000) Proc. 9th Intl. Symp. Spatial Data Handling (SDH’00) , pp. 26-41
    • Estivill-Castro, V.1    Lee, I.2
  • 9
    • 35448952856 scopus 로고    scopus 로고
    • Probabilistic clustering of extratropical cyclones using regression mixture models
    • Bren School of Information, and Computer Sciences, University of California, Irvine
    • S. Gaffney, A. Robertson, P. Smyth, S. Camargo, and M. Ghil. Probabilistic clustering of extratropical cyclones using regression mixture models. In Technical Report, Bren School of Information, and Computer Sciences, University of California, Irvine, 2006.
    • (2006) Technical Report
    • Gaffney, S.1    Robertson, A.2    Smyth, P.3    Camargo, S.4    Ghil, M.5
  • 13
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. Computer, 32: 68-75, 1999.
    • (1999) Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 16
    • 0020102027 scopus 로고
    • Least Squares Quantization in PCM
    • (original version: Technical Report, Bell Labs, 1957)
    • S. P. Lloyd. Least Squares Quantization in PCM. IEEE Trans. Information Theory, 28: 128-137, 1982, (original version: Technical Report, Bell Labs, 1957).
    • (1982) IEEE Trans. Information Theory , vol.28 , pp. 128-137
    • Lloyd, S.P.1
  • 18
    • 0003136237 scopus 로고
    • Efficient, and effective clustering method for spatial data mining
    • Santiago, Chile, September
    • R. Ng, and J. Han. Efficient, and effective clustering method for spatial data mining. In Proc. 1994 Intl. Conf. Very Large Data Bases (VLDB’94), Santiago, Chile, September 1994, pp. 144-155.
    • (1994) Proc. 1994 Intl. Conf. Very Large Data Bases (VLDB’94) , pp. 144-155
    • Ng, R.1    Han, J.2
  • 19
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    • J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining, and Knowledge Discovery, 2: 169-194, 1998.
    • (1998) Data Mining, and Knowledge Discovery , vol.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 22
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining
    • Athens, Greece, August
    • W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to spatial data mining. In Proc. 1997 Intl. Conf. Very Large Data Bases (VLDB’97), Athens, Greece, August 1997, pp. 186-195.
    • (1997) Proc. 1997 Intl. Conf. Very Large Data Bases (VLDB’97) , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.