-
1
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
Seattle, WA, June
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. 1998 ACMSIGMOD Intl. Conf. Management of Data (SIGMOD’98), Seattle, WA, June 1998, pp. 94-105.
-
(1998)
Proc. 1998 ACMSIGMOD Intl. Conf. Management of Data (SIGMOD’98)
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
2
-
-
0032131450
-
Convergence of an EM-type algorithm for spatial clustering
-
C. Ambroise, and G. Govaert. Convergence of an EM-type algorithm for spatial clustering. Pattern Recognition Letters, 19: 919-927, 1998.
-
(1998)
Pattern Recognition Letters
, vol.19
, pp. 919-927
-
-
Ambroise, C.1
Govaert, G.2
-
3
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
Philadelphia, PA, June
-
M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering points to identify the clustering structure. In Proc. 1999 ACM-SIGMOD Intl. Conf. Management of Data (SIGMOD’99), Philadelphia, PA, June 1999, pp. 49-60. (http://doi.acm.org/10.1145/304182.304187).
-
(1999)
Proc. 1999 ACM-SIGMOD Intl. Conf. Management of Data (SIGMOD’99)
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.2
Kriegel, H.-P.3
Sander, J.4
-
4
-
-
0003857778
-
A gentle tutorial of the EM algorithm, and its applications to parameter estimation for Gaussian mixture, and hidden Markov models
-
International Computer Science Institute
-
J. A. Bilmes. A gentle tutorial of the EM algorithm, and its applications to parameter estimation for Gaussian mixture, and hidden Markov models. In Technical Report, International Computer Science Institute, 1998.
-
(1998)
Technical Report
-
-
Bilmes, J.A.1
-
5
-
-
84866023472
-
Cluster analysis of western north pacific tropical cyclone tracks
-
International Research Institute for Climate, and Society, Columbia University
-
S. Camargo, A. Robertson, S. Gaffney, P. Smyth, and M. Ghil. Cluster analysis of western north pacific tropical cyclone tracks. In Technical Report, International Research Institute for Climate, and Society, Columbia University, 2005.
-
(2005)
Technical Report
-
-
Camargo, S.1
Robertson, A.2
Gaffney, S.3
Smyth, P.4
Ghil, M.5
-
6
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistical Society, 39: 1-38, 1977.
-
(1977)
J. Royal Statistical Society
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
7
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases
-
Portland, OR, August
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. In Proc. 1996 Intl. Conf. Knowledge Discovery, and Data Mining (KDD’96), Portland, OR, August 1996, pp. 226-231.
-
(1996)
Proc. 1996 Intl. Conf. Knowledge Discovery, and Data Mining (KDD’96)
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
8
-
-
0010386990
-
Amoeba: Hierarchical clustering based on spatial proximity using delaunaty diagram
-
Beijing, China, August
-
V. Estivill-Castro, and I. Lee. Amoeba: Hierarchical clustering based on spatial proximity using delaunaty diagram. In Proc. 9th Intl. Symp. Spatial Data Handling (SDH’00), Beijing, China, August 2000, pp. 26-41.
-
(2000)
Proc. 9th Intl. Symp. Spatial Data Handling (SDH’00)
, pp. 26-41
-
-
Estivill-Castro, V.1
Lee, I.2
-
9
-
-
35448952856
-
Probabilistic clustering of extratropical cyclones using regression mixture models
-
Bren School of Information, and Computer Sciences, University of California, Irvine
-
S. Gaffney, A. Robertson, P. Smyth, S. Camargo, and M. Ghil. Probabilistic clustering of extratropical cyclones using regression mixture models. In Technical Report, Bren School of Information, and Computer Sciences, University of California, Irvine, 2006.
-
(2006)
Technical Report
-
-
Gaffney, S.1
Robertson, A.2
Smyth, P.3
Camargo, S.4
Ghil, M.5
-
10
-
-
0002689560
-
Trajectory clustering with mixtures of regression models
-
San Diego, CA, August
-
S. Gaffney, and P. Smyth. Trajectory clustering with mixtures of regression models. In Proc. 1999 Intl. Conf. Knowledge Discovery, and Data Mining (KDD’99), San Diego, CA, August 1999, pp. 63-72.
-
(1999)
Proc. 1999 Intl. Conf. Knowledge Discovery, and Data Mining (KDD’99)
, pp. 63-72
-
-
Gaffney, S.1
Smyth, P.2
-
12
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
New York, August 1998
-
A. Hinneburg, and D. A. Keim. An efficient approach to clustering in large multimedia databases with noise. In Proc. 1998 Intl. Conf. Knowledge Discovery, and Data Mining (KDD’98), New York, August 1998, pp. 58-65.
-
Proc. 1998 Intl. Conf. Knowledge Discovery, and Data Mining (KDD’98)
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.A.2
-
13
-
-
0032686723
-
CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
-
G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. Computer, 32: 68-75, 1999.
-
(1999)
Computer
, vol.32
, pp. 68-75
-
-
Karypis, G.1
Han, E.-H.2
Kumar, V.3
-
15
-
-
35449007737
-
Trajectory clustering: A partition-and-group framework
-
Beijing, China, June
-
J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A partition-and-group framework. In Proc. 2007 ACM-SIGMOD Intl. Conf. Management of Data (SIGMOD’07), Beijing, China, June 2007, pp. 593-604. (http://doi.acm.org/10.1145/1247480.1247546).
-
(2007)
Proc. 2007 ACM-SIGMOD Intl. Conf. Management of Data (SIGMOD’07)
, pp. 593-604
-
-
Lee, J.-G.1
Han, J.2
Whang, K.-Y.3
-
16
-
-
0020102027
-
Least Squares Quantization in PCM
-
(original version: Technical Report, Bell Labs, 1957)
-
S. P. Lloyd. Least Squares Quantization in PCM. IEEE Trans. Information Theory, 28: 128-137, 1982, (original version: Technical Report, Bell Labs, 1957).
-
(1982)
IEEE Trans. Information Theory
, vol.28
, pp. 128-137
-
-
Lloyd, S.P.1
-
18
-
-
0003136237
-
Efficient, and effective clustering method for spatial data mining
-
Santiago, Chile, September
-
R. Ng, and J. Han. Efficient, and effective clustering method for spatial data mining. In Proc. 1994 Intl. Conf. Very Large Data Bases (VLDB’94), Santiago, Chile, September 1994, pp. 144-155.
-
(1994)
Proc. 1994 Intl. Conf. Very Large Data Bases (VLDB’94)
, pp. 144-155
-
-
Ng, R.1
Han, J.2
-
19
-
-
22044455069
-
Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
-
J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining, and Knowledge Discovery, 2: 169-194, 1998.
-
(1998)
Data Mining, and Knowledge Discovery
, vol.2
, pp. 169-194
-
-
Sander, J.1
Ester, M.2
Kriegel, H.-P.3
Xu, X.4
-
20
-
-
0003052357
-
WaveCluster: A multiresolution clustering approach for very large spatial databases
-
New York, August
-
G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multiresolution clustering approach for very large spatial databases. In Proc. 1998 Intl. Conf. Very Large Data Bases (VLDB’98), New York, August 1998, pp. 428-439.
-
(1998)
Proc. 1998 Intl. Conf. Very Large Data Bases (VLDB’98)
, pp. 428-439
-
-
Sheikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
21
-
-
28444458845
-
Application, and study of spatial cluster, and customer partitioning
-
Guangzhou, China, August
-
L.-H. Wan, Y.-J. Li, W.-Y. Liu, and D.-Y. Zhang. Application, and study of spatial cluster, and customer partitioning. In Proc. 2005 Intl. Conf. Machine Learning, and Cybernetics, Guangzhou, China, August 2005, pp. 1701-1706.
-
(2005)
Proc. 2005 Intl. Conf. Machine Learning, and Cybernetics
, pp. 1701-1706
-
-
Wan, L.-H.1
Li, Y.-J.2
Liu, W.-Y.3
Zhang, D.-Y.4
-
22
-
-
84994158589
-
STING: A statistical information grid approach to spatial data mining
-
Athens, Greece, August
-
W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to spatial data mining. In Proc. 1997 Intl. Conf. Very Large Data Bases (VLDB’97), Athens, Greece, August 1997, pp. 186-195.
-
(1997)
Proc. 1997 Intl. Conf. Very Large Data Bases (VLDB’97)
, pp. 186-195
-
-
Wang, W.1
Yang, J.2
Muntz, R.3
-
23
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
Montreal, Canada, June
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. In Proc. 1996 ACM-SIGMOD Intl. Conf. Management of Data (SIGMOD’96), Montreal, Canada, June 1996, pp. 103-114.
-
(1996)
Proc. 1996 ACM-SIGMOD Intl. Conf. Management of Data (SIGMOD’96)
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|