메뉴 건너뛰기




Volumn 14, Issue 5, 2015, Pages 1993-2001

Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics

Author keywords

accuracy; classification; Imputation; label free; mean square error; peak intensity

Indexed keywords

ALGORITHM; COMPARATIVE STUDY; EVALUATION STUDY; GENE EXPRESSION; GLUCOSE TOLERANCE; HUMAN; K NEAREST NEIGHBOR; LEAST SQUARES ADAPTIVE IMPUTATION METHOD; LIMIT OF DETECTION; LIQUID CHROMATOGRAPHY; LOCAL LEAST SQUARE IMPUTATION METHOD; MACHINE LEARNING; MASS SPECTROMETRY; MEASUREMENT ACCURACY; MODEL BASED IMPUTATION METHOD; NONHUMAN; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROCEDURES; PROTEOMICS; QUALITATIVE ANALYSIS; QUANTITATIVE ANALYSIS; RANDOM TAIL IMPUTATION METHOD; REGULARIZED EXPECTATION MAXIMIZATION IMPUTATION METHOD; REVIEW; ANIMAL; CHEMISTRY; LUNG; MOUSE; STATISTICS AND NUMERICAL DATA;

EID: 84929657508     PISSN: 15353893     EISSN: 15353907     Source Type: Journal    
DOI: 10.1021/pr501138h     Document Type: Review
Times cited : (195)

References (48)
  • 1
    • 84878015167 scopus 로고    scopus 로고
    • A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics
    • Van Oudenhove, L.; Devreese, B. A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics Appl. Microbiol. Biotechnol. 2013, 97, 4749-4762
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 4749-4762
    • Van Oudenhove, L.1    Devreese, B.2
  • 2
    • 84878254491 scopus 로고    scopus 로고
    • Serum proteomics in biomedical research: A systematic review
    • Zhang, A. H.; Sun, H.; Yan, G. L. Serum proteomics in biomedical research: a systematic review Appl. Biochem. Biotechnol. 2013, 170, 774-786
    • (2013) Appl. Biochem. Biotechnol. , vol.170 , pp. 774-786
    • Zhang, A.H.1    Sun, H.2    Yan, G.L.3
  • 3
    • 84865576726 scopus 로고    scopus 로고
    • Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present
    • Bantscheff, M.; Lemeer, S.; Savitski, M. M. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present Anal Bioanal Chem. 2012, 404, 939-965
    • (2012) Anal Bioanal Chem. , vol.404 , pp. 939-965
    • Bantscheff, M.1    Lemeer, S.2    Savitski, M.M.3
  • 4
    • 84856735736 scopus 로고    scopus 로고
    • A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations
    • e752
    • Wright, P. C.; Noirel, J.; Ow, S. Y. A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations Theriogenology 2012, 77, 738-765 e752
    • (2012) Theriogenology , vol.77 , pp. 738-765
    • Wright, P.C.1    Noirel, J.2    Ow, S.Y.3
  • 5
    • 78649315174 scopus 로고    scopus 로고
    • Mass-spectrometry-based clinical proteomics-a review and prospective
    • Parker, C. E.; Pearson, T. W.; Anderson, N. L. Mass-spectrometry-based clinical proteomics-a review and prospective Analyst 2010, 135, 1830-1838
    • (2010) Analyst , vol.135 , pp. 1830-1838
    • Parker, C.E.1    Pearson, T.W.2    Anderson, N.L.3
  • 6
    • 77955477947 scopus 로고    scopus 로고
    • A review of experimental design best practices for proteomics based biomarker discovery: Focus on SELDI-TOF
    • Caffrey, R. E. A review of experimental design best practices for proteomics based biomarker discovery: focus on SELDI-TOF Methods Mol. Biol. 2010, 641, 167-183
    • (2010) Methods Mol. Biol. , vol.641 , pp. 167-183
    • Caffrey, R.E.1
  • 7
    • 77952538049 scopus 로고    scopus 로고
    • Quantitation in mass-spectrometry-based proteomics
    • Schulze, W. X.; Usadel, B. Quantitation in mass-spectrometry-based proteomics Annu. Rev. Plant Biol. 2010, 61, 491-516
    • (2010) Annu. Rev. Plant Biol. , vol.61 , pp. 491-516
    • Schulze, W.X.1    Usadel, B.2
  • 8
    • 84859242507 scopus 로고    scopus 로고
    • How advancement in biological network analysis methods empowers proteomics
    • Goh, W. W.; Lee, Y. H.; Chung, M. How advancement in biological network analysis methods empowers proteomics Proteomics 2012, 12, 550-563
    • (2012) Proteomics , vol.12 , pp. 550-563
    • Goh, W.W.1    Lee, Y.H.2    Chung, M.3
  • 9
    • 84877125254 scopus 로고    scopus 로고
    • Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice
    • Goh, W. W.; Sergot, M. J.; Sng, J. C. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice J. Proteome Res. 2013, 12, 2116-2127
    • (2013) J. Proteome Res. , vol.12 , pp. 2116-2127
    • Goh, W.W.1    Sergot, M.J.2    Sng, J.C.3
  • 11
    • 77950949307 scopus 로고    scopus 로고
    • Dealing with missing values in large-scale studies: Microarray data imputation and beyond
    • Aittokallio, T. Dealing with missing values in large-scale studies: microarray data imputation and beyond Briefings Bioinf. 2010, 11, 253-264
    • (2010) Briefings Bioinf. , vol.11 , pp. 253-264
    • Aittokallio, T.1
  • 12
    • 77949681022 scopus 로고    scopus 로고
    • Missing values in gel-based proteomics
    • Albrecht, D.; Kniemeyer, O.; Brakhage, A. A. Missing values in gel-based proteomics Proteomics 2010, 10, 1202-1211
    • (2010) Proteomics , vol.10 , pp. 1202-1211
    • Albrecht, D.1    Kniemeyer, O.2    Brakhage, A.A.3
  • 13
    • 39749093807 scopus 로고    scopus 로고
    • Which missing value imputation method to use in expression profiles: A comparative study and two selection schemes
    • Brock, G. N.; Shaffer, J. R.; Blakesley, R. E. Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes BMC Bioinf. 2008, 9, 12
    • (2008) BMC Bioinf. , vol.9 , pp. 12
    • Brock, G.N.1    Shaffer, J.R.2    Blakesley, R.E.3
  • 14
    • 33748520872 scopus 로고    scopus 로고
    • Review: A gentle introduction to imputation of missing values
    • Donders, A. R.; van der Heijden, G. J.; Stijnen, T. Review: a gentle introduction to imputation of missing values J. Clin. Epidemiol. 2006, 59, 1087-1091
    • (2006) J. Clin. Epidemiol. , vol.59 , pp. 1087-1091
    • Donders, A.R.1    Van Der Heijden, G.J.2    Stijnen, T.3
  • 15
    • 77950876501 scopus 로고    scopus 로고
    • Missing data analysis using multiple imputation: Getting to the heart of the matter
    • He, Y. Missing data analysis using multiple imputation: getting to the heart of the matter Circulation 2010, 3, 98-105
    • (2010) Circulation , vol.3 , pp. 98-105
    • He, Y.1
  • 16
    • 13444304426 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data: Local least squares imputation
    • Kim, H.; Golub, G. H.; Park, H. Missing value estimation for DNA microarray gene expression data: local least squares imputation Bioinformatics 2005, 21, 187-198
    • (2005) Bioinformatics , vol.21 , pp. 187-198
    • Kim, H.1    Golub, G.H.2    Park, H.3
  • 17
    • 79959252789 scopus 로고    scopus 로고
    • Prediction and characterization of missing proteomic data in Desulfovibrio vulgaris
    • Li, F.; Nie, L.; Wu, G. Prediction and characterization of missing proteomic data in Desulfovibrio vulgaris Comp. Funct. Genomics 2011, 2011, 780973
    • (2011) Comp. Funct. Genomics , vol.2011 , pp. 780973
    • Li, F.1    Nie, L.2    Wu, G.3
  • 19
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values
    • Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values J. Clim. 2001, 14, 853-871
    • (2001) J. Clim. , vol.14 , pp. 853-871
    • Schneider, T.1
  • 20
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya, O.; Cantor, M.; Sherlock, G. Missing value estimation methods for DNA microarrays Bioinformatics 2001, 17, 520-525
    • (2001) Bioinformatics , vol.17 , pp. 520-525
    • Troyanskaya, O.1    Cantor, M.2    Sherlock, G.3
  • 21
    • 43849094303 scopus 로고    scopus 로고
    • Missing value imputation improves clustering and interpretation of gene expression microarray data
    • Tuikkala, J.; Elo, L. L.; Nevalainen, O. S. Missing value imputation improves clustering and interpretation of gene expression microarray data BMC Bioinf. 2008, 9, 202
    • (2008) BMC Bioinf. , vol.9 , pp. 202
    • Tuikkala, J.1    Elo, L.L.2    Nevalainen, O.S.3
  • 22
    • 32344442813 scopus 로고    scopus 로고
    • Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics
    • Callister, S. J.; Barry, R. C.; Adkins, J. N. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics J. Proteome Res. 2006, 5, 277-286
    • (2006) J. Proteome Res. , vol.5 , pp. 277-286
    • Callister, S.J.1    Barry, R.C.2    Adkins, J.N.3
  • 23
    • 66749171697 scopus 로고    scopus 로고
    • Statistical design of quantitative mass spectrometry-based proteomic experiments
    • Oberg, A. L.; Vitek, O. Statistical design of quantitative mass spectrometry-based proteomic experiments J. Proteome Res. 2009, 8, 2144-2156
    • (2009) J. Proteome Res. , vol.8 , pp. 2144-2156
    • Oberg, A.L.1    Vitek, O.2
  • 24
    • 42649131100 scopus 로고    scopus 로고
    • Statistical similarities between transcriptomics and quantitative shotgun proteomics data
    • Pavelka, N.; Fournier, M. L.; Swanson, S. K. Statistical similarities between transcriptomics and quantitative shotgun proteomics data Mol. Cell. Proteomics 2008, 7, 631-644
    • (2008) Mol. Cell. Proteomics , vol.7 , pp. 631-644
    • Pavelka, N.1    Fournier, M.L.2    Swanson, S.K.3
  • 25
    • 78650761359 scopus 로고    scopus 로고
    • Addressing the challenge of defining valid proteomic biomarkers and classifiers
    • Dakna, M.; Harris, K.; Kalousis, A. Addressing the challenge of defining valid proteomic biomarkers and classifiers BMC Bioinf. 2010, 11, 594
    • (2010) BMC Bioinf. , vol.11 , pp. 594
    • Dakna, M.1    Harris, K.2    Kalousis, A.3
  • 26
    • 68549137863 scopus 로고    scopus 로고
    • A statistical framework for protein quantitation in bottom-up MS-based proteomics
    • Karpievitch, Y.; Stanley, J.; Taverner, T. A statistical framework for protein quantitation in bottom-up MS-based proteomics Bioinformatics 2009, 25, 2028-2034
    • (2009) Bioinformatics , vol.25 , pp. 2028-2034
    • Karpievitch, Y.1    Stanley, J.2    Taverner, T.3
  • 27
    • 84878053091 scopus 로고    scopus 로고
    • Normalization and missing value imputation for label-free LC-MS analysis
    • Karpievitch, Y. V.; Dabney, A. R.; Smith, R. D. Normalization and missing value imputation for label-free LC-MS analysis BMC BMC Bioinf. 2012, 13, S5
    • (2012) BMC BMC Bioinf. , vol.13 , pp. 5
    • Karpievitch, Y.V.1    Dabney, A.R.2    Smith, R.D.3
  • 28
    • 71149090202 scopus 로고    scopus 로고
    • Urinary protein profiles in a rat model for diabetic complications
    • Schlatzer, D. M.; Dazard, J. E.; Dharsee, M. Urinary protein profiles in a rat model for diabetic complications Mol. Cell. Proteomics 2009, 8, 2145-2158
    • (2009) Mol. Cell. Proteomics , vol.8 , pp. 2145-2158
    • Schlatzer, D.M.1    Dazard, J.E.2    Dharsee, M.3
  • 29
    • 84865108718 scopus 로고    scopus 로고
    • Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data
    • Tekwe, C. D.; Carroll, R. J.; Dabney, A. R. Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data Bioinformatics 2012, 28, 1998-2003
    • (2012) Bioinformatics , vol.28 , pp. 1998-2003
    • Tekwe, C.D.1    Carroll, R.J.2    Dabney, A.R.3
  • 30
    • 84857412355 scopus 로고    scopus 로고
    • Using a spike-in experiment to evaluate analysis of LC-MS data
    • Tuli, L.; Tsai, T. H.; Varghese, R. S. Using a spike-in experiment to evaluate analysis of LC-MS data Proteome Sci. 2012, 10, 13
    • (2012) Proteome Sci. , vol.10 , pp. 13
    • Tuli, L.1    Tsai, T.H.2    Varghese, R.S.3
  • 31
    • 39049181470 scopus 로고    scopus 로고
    • An SVM scorer for more sensitive and reliable peptide identification via tandem mass spectrometry
    • Wang, H.; Fu, Y.; Sun, R. An SVM scorer for more sensitive and reliable peptide identification via tandem mass spectrometry Pac. Symp. Biocomput. 2006, 303-314
    • (2006) Pac. Symp. Biocomput. , pp. 303-314
    • Wang, H.1    Fu, Y.2    Sun, R.3
  • 32
    • 84876495055 scopus 로고    scopus 로고
    • Sequential projection pursuit principal component analysis-dealing with missing data associated with new -omics technologies
    • Webb-Robertson, B. J.; Matzke, M. M.; Metz, T. O. Sequential projection pursuit principal component analysis-dealing with missing data associated with new -omics technologies Biotechniques 2013, 54, 165-168
    • (2013) Biotechniques , vol.54 , pp. 165-168
    • Webb-Robertson, B.J.1    Matzke, M.M.2    Metz, T.O.3
  • 33
    • 78149378686 scopus 로고    scopus 로고
    • Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data
    • Webb-Robertson, B. J.; McCue, L. A.; Waters, K. M. Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data J. Proteome Res. 2010, 9, 5748-5756
    • (2010) J. Proteome Res. , vol.9 , pp. 5748-5756
    • Webb-Robertson, B.J.1    McCue, L.A.2    Waters, K.M.3
  • 34
    • 84883805454 scopus 로고    scopus 로고
    • Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates
    • Schwammle, V.; Leon, I. R.; Jensen, O. N. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates J. Proteome Res. 2013, 12, 3874-3883
    • (2013) J. Proteome Res. , vol.12 , pp. 3874-3883
    • Schwammle, V.1    Leon, I.R.2    Jensen, O.N.3
  • 35
    • 2342646842 scopus 로고    scopus 로고
    • LSimpute: Accurate estimation of missing values in microarray data with least squares methods
    • Bo, T. H.; Dysvik, B.; Jonassen, I. LSimpute: accurate estimation of missing values in microarray data with least squares methods Nucleic Acids Res. 2004, 32, e34
    • (2004) Nucleic Acids Res. , vol.32 , pp. 34
    • Bo, T.H.1    Dysvik, B.2    Jonassen, I.3
  • 36
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method for gene expression profile data
    • Oba, S.; Sato, M. A.; Takemasa, I. A Bayesian missing value estimation method for gene expression profile data Bioinformatics 2003, 19, 2088-2096
    • (2003) Bioinformatics , vol.19 , pp. 2088-2096
    • Oba, S.1    Sato, M.A.2    Takemasa, I.3
  • 37
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping, M. E.; Bishop, C. M. Probabilistic principal component analysis J. R. Stat. Soc., Ser. B 1999, 61, 611-622
    • (1999) J. R. Stat. Soc., Ser. B , vol.61 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 38
    • 84864380746 scopus 로고    scopus 로고
    • Bayesian analysis of iTRAQ data with nonrandom missingness: Identification of differentially expressed proteins
    • Luo, R.; Colangelo, C. M.; Sessa, W. C. Bayesian analysis of iTRAQ data with nonrandom missingness: identification of differentially expressed proteins Stat. Biosci. 2009, 1, 228-245
    • (2009) Stat. Biosci. , vol.1 , pp. 228-245
    • Luo, R.1    Colangelo, C.M.2    Sessa, W.C.3
  • 39
    • 84866459077 scopus 로고    scopus 로고
    • DanteR: An extensible R-based tool for quantitative analysis of -omics data
    • Taverner, T.; Karpievitch, Y. V.; Polpitiya, A. D. DanteR: an extensible R-based tool for quantitative analysis of -omics data Bioinformatics 2012, 28, 2404-2406
    • (2012) Bioinformatics , vol.28 , pp. 2404-2406
    • Taverner, T.1    Karpievitch, Y.V.2    Polpitiya, A.D.3
  • 40
    • 84878051310 scopus 로고    scopus 로고
    • Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs
    • Clough, T.; Thaminy, S.; Ragg, S. Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs BMC Bioinf. 2012, 13, S6
    • (2012) BMC Bioinf. , vol.13 , pp. 6
    • Clough, T.1    Thaminy, S.2    Ragg, S.3
  • 41
    • 46249116675 scopus 로고    scopus 로고
    • DAnTE: A statistical tool for quantitative analysis of -omics data
    • Polpitiya, A. D.; Qian, W. J.; Jaitly, N. DAnTE: a statistical tool for quantitative analysis of -omics data Bioinformatics 2008, 24, 1556-1558
    • (2008) Bioinformatics , vol.24 , pp. 1556-1558
    • Polpitiya, A.D.1    Qian, W.J.2    Jaitly, N.3
  • 42
    • 84861157792 scopus 로고    scopus 로고
    • Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles
    • Deeb, S. J.; D'Souza, R. C.; Cox, J. Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles Mol. Cell. Proteomics 2012, 11, 77-89
    • (2012) Mol. Cell. Proteomics , vol.11 , pp. 77-89
    • Deeb, S.J.1    D'Souza, R.C.2    Cox, J.3
  • 43
    • 77952344256 scopus 로고    scopus 로고
    • Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions
    • Hubner, N. C.; Bird, A. W.; Cox, J. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions J. Cell Biol. 2010, 189, 739-754
    • (2010) J. Cell Biol. , vol.189 , pp. 739-754
    • Hubner, N.C.1    Bird, A.W.2    Cox, J.3
  • 44
    • 78650554266 scopus 로고    scopus 로고
    • Biological impact of missing-value imputation on downstream analyses of gene expression profiles
    • Oh, S.; Kang, D. D.; Brock, G. N. Biological impact of missing-value imputation on downstream analyses of gene expression profiles Bioinformatics 2011, 27, 78-86
    • (2011) Bioinformatics , vol.27 , pp. 78-86
    • Oh, S.1    Kang, D.D.2    Brock, G.N.3
  • 45
    • 84909960219 scopus 로고    scopus 로고
    • Bayesian proteoform modeling improves protein quantification of global proteomic measurements
    • Webb-Robertson, B. J.; Matzke, M. M.; Datta, S. Bayesian proteoform modeling improves protein quantification of global proteomic measurements Mol. Cell. Proteomics 2014, 13, 3639-3646
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 3639-3646
    • Webb-Robertson, B.J.1    Matzke, M.M.2    Datta, S.3
  • 46
    • 84873987395 scopus 로고    scopus 로고
    • A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments
    • Matzke, M. M.; Brown, J. N.; Gritsenko, M. A. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments Proteomics 2013, 13, 493-503
    • (2013) Proteomics , vol.13 , pp. 493-503
    • Matzke, M.M.1    Brown, J.N.2    Gritsenko, M.A.3
  • 47
    • 82955187002 scopus 로고    scopus 로고
    • A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors
    • Webb-Robertson, B. J.; Matzke, M. M.; Jacobs, J. M. A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors Proteomics 2011, 11, 4736-4741
    • (2011) Proteomics , vol.11 , pp. 4736-4741
    • Webb-Robertson, B.J.1    Matzke, M.M.2    Jacobs, J.M.3
  • 48
    • 84874625369 scopus 로고    scopus 로고
    • Proteoform: A single term describing protein complexity
    • Smith, L. M.; Kelleher, N. L. Proteoform: a single term describing protein complexity Nat. Methods. 2013, 10, 186-187
    • (2013) Nat. Methods. , vol.10 , pp. 186-187
    • Smith, L.M.1    Kelleher, N.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.