-
1
-
-
84878015167
-
A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics
-
Van Oudenhove, L.; Devreese, B. A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics Appl. Microbiol. Biotechnol. 2013, 97, 4749-4762
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 4749-4762
-
-
Van Oudenhove, L.1
Devreese, B.2
-
2
-
-
84878254491
-
Serum proteomics in biomedical research: A systematic review
-
Zhang, A. H.; Sun, H.; Yan, G. L. Serum proteomics in biomedical research: a systematic review Appl. Biochem. Biotechnol. 2013, 170, 774-786
-
(2013)
Appl. Biochem. Biotechnol.
, vol.170
, pp. 774-786
-
-
Zhang, A.H.1
Sun, H.2
Yan, G.L.3
-
3
-
-
84865576726
-
Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present
-
Bantscheff, M.; Lemeer, S.; Savitski, M. M. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present Anal Bioanal Chem. 2012, 404, 939-965
-
(2012)
Anal Bioanal Chem.
, vol.404
, pp. 939-965
-
-
Bantscheff, M.1
Lemeer, S.2
Savitski, M.M.3
-
4
-
-
84856735736
-
A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations
-
e752
-
Wright, P. C.; Noirel, J.; Ow, S. Y. A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations Theriogenology 2012, 77, 738-765 e752
-
(2012)
Theriogenology
, vol.77
, pp. 738-765
-
-
Wright, P.C.1
Noirel, J.2
Ow, S.Y.3
-
5
-
-
78649315174
-
Mass-spectrometry-based clinical proteomics-a review and prospective
-
Parker, C. E.; Pearson, T. W.; Anderson, N. L. Mass-spectrometry-based clinical proteomics-a review and prospective Analyst 2010, 135, 1830-1838
-
(2010)
Analyst
, vol.135
, pp. 1830-1838
-
-
Parker, C.E.1
Pearson, T.W.2
Anderson, N.L.3
-
6
-
-
77955477947
-
A review of experimental design best practices for proteomics based biomarker discovery: Focus on SELDI-TOF
-
Caffrey, R. E. A review of experimental design best practices for proteomics based biomarker discovery: focus on SELDI-TOF Methods Mol. Biol. 2010, 641, 167-183
-
(2010)
Methods Mol. Biol.
, vol.641
, pp. 167-183
-
-
Caffrey, R.E.1
-
7
-
-
77952538049
-
Quantitation in mass-spectrometry-based proteomics
-
Schulze, W. X.; Usadel, B. Quantitation in mass-spectrometry-based proteomics Annu. Rev. Plant Biol. 2010, 61, 491-516
-
(2010)
Annu. Rev. Plant Biol.
, vol.61
, pp. 491-516
-
-
Schulze, W.X.1
Usadel, B.2
-
8
-
-
84859242507
-
How advancement in biological network analysis methods empowers proteomics
-
Goh, W. W.; Lee, Y. H.; Chung, M. How advancement in biological network analysis methods empowers proteomics Proteomics 2012, 12, 550-563
-
(2012)
Proteomics
, vol.12
, pp. 550-563
-
-
Goh, W.W.1
Lee, Y.H.2
Chung, M.3
-
9
-
-
84877125254
-
Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice
-
Goh, W. W.; Sergot, M. J.; Sng, J. C. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice J. Proteome Res. 2013, 12, 2116-2127
-
(2013)
J. Proteome Res.
, vol.12
, pp. 2116-2127
-
-
Goh, W.W.1
Sergot, M.J.2
Sng, J.C.3
-
10
-
-
33750130468
-
Data merging for integrated microarray and proteomic analysis
-
Waters, K. M.; Pounds, J. G.; Thrall, B. D. Data merging for integrated microarray and proteomic analysis Briefings Funct. Genomics Proteomics 2006, 5, 261-272
-
(2006)
Briefings Funct. Genomics Proteomics
, vol.5
, pp. 261-272
-
-
Waters, K.M.1
Pounds, J.G.2
Thrall, B.D.3
-
11
-
-
77950949307
-
Dealing with missing values in large-scale studies: Microarray data imputation and beyond
-
Aittokallio, T. Dealing with missing values in large-scale studies: microarray data imputation and beyond Briefings Bioinf. 2010, 11, 253-264
-
(2010)
Briefings Bioinf.
, vol.11
, pp. 253-264
-
-
Aittokallio, T.1
-
12
-
-
77949681022
-
Missing values in gel-based proteomics
-
Albrecht, D.; Kniemeyer, O.; Brakhage, A. A. Missing values in gel-based proteomics Proteomics 2010, 10, 1202-1211
-
(2010)
Proteomics
, vol.10
, pp. 1202-1211
-
-
Albrecht, D.1
Kniemeyer, O.2
Brakhage, A.A.3
-
13
-
-
39749093807
-
Which missing value imputation method to use in expression profiles: A comparative study and two selection schemes
-
Brock, G. N.; Shaffer, J. R.; Blakesley, R. E. Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes BMC Bioinf. 2008, 9, 12
-
(2008)
BMC Bioinf.
, vol.9
, pp. 12
-
-
Brock, G.N.1
Shaffer, J.R.2
Blakesley, R.E.3
-
14
-
-
33748520872
-
Review: A gentle introduction to imputation of missing values
-
Donders, A. R.; van der Heijden, G. J.; Stijnen, T. Review: a gentle introduction to imputation of missing values J. Clin. Epidemiol. 2006, 59, 1087-1091
-
(2006)
J. Clin. Epidemiol.
, vol.59
, pp. 1087-1091
-
-
Donders, A.R.1
Van Der Heijden, G.J.2
Stijnen, T.3
-
15
-
-
77950876501
-
Missing data analysis using multiple imputation: Getting to the heart of the matter
-
He, Y. Missing data analysis using multiple imputation: getting to the heart of the matter Circulation 2010, 3, 98-105
-
(2010)
Circulation
, vol.3
, pp. 98-105
-
-
He, Y.1
-
16
-
-
13444304426
-
Missing value estimation for DNA microarray gene expression data: Local least squares imputation
-
Kim, H.; Golub, G. H.; Park, H. Missing value estimation for DNA microarray gene expression data: local least squares imputation Bioinformatics 2005, 21, 187-198
-
(2005)
Bioinformatics
, vol.21
, pp. 187-198
-
-
Kim, H.1
Golub, G.H.2
Park, H.3
-
17
-
-
79959252789
-
Prediction and characterization of missing proteomic data in Desulfovibrio vulgaris
-
Li, F.; Nie, L.; Wu, G. Prediction and characterization of missing proteomic data in Desulfovibrio vulgaris Comp. Funct. Genomics 2011, 2011, 780973
-
(2011)
Comp. Funct. Genomics
, vol.2011
, pp. 780973
-
-
Li, F.1
Nie, L.2
Wu, G.3
-
19
-
-
0035284320
-
Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values
-
Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values J. Clim. 2001, 14, 853-871
-
(2001)
J. Clim.
, vol.14
, pp. 853-871
-
-
Schneider, T.1
-
20
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
Troyanskaya, O.; Cantor, M.; Sherlock, G. Missing value estimation methods for DNA microarrays Bioinformatics 2001, 17, 520-525
-
(2001)
Bioinformatics
, vol.17
, pp. 520-525
-
-
Troyanskaya, O.1
Cantor, M.2
Sherlock, G.3
-
21
-
-
43849094303
-
Missing value imputation improves clustering and interpretation of gene expression microarray data
-
Tuikkala, J.; Elo, L. L.; Nevalainen, O. S. Missing value imputation improves clustering and interpretation of gene expression microarray data BMC Bioinf. 2008, 9, 202
-
(2008)
BMC Bioinf.
, vol.9
, pp. 202
-
-
Tuikkala, J.1
Elo, L.L.2
Nevalainen, O.S.3
-
22
-
-
32344442813
-
Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics
-
Callister, S. J.; Barry, R. C.; Adkins, J. N. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics J. Proteome Res. 2006, 5, 277-286
-
(2006)
J. Proteome Res.
, vol.5
, pp. 277-286
-
-
Callister, S.J.1
Barry, R.C.2
Adkins, J.N.3
-
23
-
-
66749171697
-
Statistical design of quantitative mass spectrometry-based proteomic experiments
-
Oberg, A. L.; Vitek, O. Statistical design of quantitative mass spectrometry-based proteomic experiments J. Proteome Res. 2009, 8, 2144-2156
-
(2009)
J. Proteome Res.
, vol.8
, pp. 2144-2156
-
-
Oberg, A.L.1
Vitek, O.2
-
24
-
-
42649131100
-
Statistical similarities between transcriptomics and quantitative shotgun proteomics data
-
Pavelka, N.; Fournier, M. L.; Swanson, S. K. Statistical similarities between transcriptomics and quantitative shotgun proteomics data Mol. Cell. Proteomics 2008, 7, 631-644
-
(2008)
Mol. Cell. Proteomics
, vol.7
, pp. 631-644
-
-
Pavelka, N.1
Fournier, M.L.2
Swanson, S.K.3
-
25
-
-
78650761359
-
Addressing the challenge of defining valid proteomic biomarkers and classifiers
-
Dakna, M.; Harris, K.; Kalousis, A. Addressing the challenge of defining valid proteomic biomarkers and classifiers BMC Bioinf. 2010, 11, 594
-
(2010)
BMC Bioinf.
, vol.11
, pp. 594
-
-
Dakna, M.1
Harris, K.2
Kalousis, A.3
-
26
-
-
68549137863
-
A statistical framework for protein quantitation in bottom-up MS-based proteomics
-
Karpievitch, Y.; Stanley, J.; Taverner, T. A statistical framework for protein quantitation in bottom-up MS-based proteomics Bioinformatics 2009, 25, 2028-2034
-
(2009)
Bioinformatics
, vol.25
, pp. 2028-2034
-
-
Karpievitch, Y.1
Stanley, J.2
Taverner, T.3
-
27
-
-
84878053091
-
Normalization and missing value imputation for label-free LC-MS analysis
-
Karpievitch, Y. V.; Dabney, A. R.; Smith, R. D. Normalization and missing value imputation for label-free LC-MS analysis BMC BMC Bioinf. 2012, 13, S5
-
(2012)
BMC BMC Bioinf.
, vol.13
, pp. 5
-
-
Karpievitch, Y.V.1
Dabney, A.R.2
Smith, R.D.3
-
28
-
-
71149090202
-
Urinary protein profiles in a rat model for diabetic complications
-
Schlatzer, D. M.; Dazard, J. E.; Dharsee, M. Urinary protein profiles in a rat model for diabetic complications Mol. Cell. Proteomics 2009, 8, 2145-2158
-
(2009)
Mol. Cell. Proteomics
, vol.8
, pp. 2145-2158
-
-
Schlatzer, D.M.1
Dazard, J.E.2
Dharsee, M.3
-
29
-
-
84865108718
-
Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data
-
Tekwe, C. D.; Carroll, R. J.; Dabney, A. R. Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data Bioinformatics 2012, 28, 1998-2003
-
(2012)
Bioinformatics
, vol.28
, pp. 1998-2003
-
-
Tekwe, C.D.1
Carroll, R.J.2
Dabney, A.R.3
-
30
-
-
84857412355
-
Using a spike-in experiment to evaluate analysis of LC-MS data
-
Tuli, L.; Tsai, T. H.; Varghese, R. S. Using a spike-in experiment to evaluate analysis of LC-MS data Proteome Sci. 2012, 10, 13
-
(2012)
Proteome Sci.
, vol.10
, pp. 13
-
-
Tuli, L.1
Tsai, T.H.2
Varghese, R.S.3
-
31
-
-
39049181470
-
An SVM scorer for more sensitive and reliable peptide identification via tandem mass spectrometry
-
Wang, H.; Fu, Y.; Sun, R. An SVM scorer for more sensitive and reliable peptide identification via tandem mass spectrometry Pac. Symp. Biocomput. 2006, 303-314
-
(2006)
Pac. Symp. Biocomput.
, pp. 303-314
-
-
Wang, H.1
Fu, Y.2
Sun, R.3
-
32
-
-
84876495055
-
Sequential projection pursuit principal component analysis-dealing with missing data associated with new -omics technologies
-
Webb-Robertson, B. J.; Matzke, M. M.; Metz, T. O. Sequential projection pursuit principal component analysis-dealing with missing data associated with new -omics technologies Biotechniques 2013, 54, 165-168
-
(2013)
Biotechniques
, vol.54
, pp. 165-168
-
-
Webb-Robertson, B.J.1
Matzke, M.M.2
Metz, T.O.3
-
33
-
-
78149378686
-
Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data
-
Webb-Robertson, B. J.; McCue, L. A.; Waters, K. M. Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data J. Proteome Res. 2010, 9, 5748-5756
-
(2010)
J. Proteome Res.
, vol.9
, pp. 5748-5756
-
-
Webb-Robertson, B.J.1
McCue, L.A.2
Waters, K.M.3
-
34
-
-
84883805454
-
Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates
-
Schwammle, V.; Leon, I. R.; Jensen, O. N. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates J. Proteome Res. 2013, 12, 3874-3883
-
(2013)
J. Proteome Res.
, vol.12
, pp. 3874-3883
-
-
Schwammle, V.1
Leon, I.R.2
Jensen, O.N.3
-
35
-
-
2342646842
-
LSimpute: Accurate estimation of missing values in microarray data with least squares methods
-
Bo, T. H.; Dysvik, B.; Jonassen, I. LSimpute: accurate estimation of missing values in microarray data with least squares methods Nucleic Acids Res. 2004, 32, e34
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 34
-
-
Bo, T.H.1
Dysvik, B.2
Jonassen, I.3
-
36
-
-
0242643743
-
A Bayesian missing value estimation method for gene expression profile data
-
Oba, S.; Sato, M. A.; Takemasa, I. A Bayesian missing value estimation method for gene expression profile data Bioinformatics 2003, 19, 2088-2096
-
(2003)
Bioinformatics
, vol.19
, pp. 2088-2096
-
-
Oba, S.1
Sato, M.A.2
Takemasa, I.3
-
37
-
-
0038959172
-
Probabilistic principal component analysis
-
Tipping, M. E.; Bishop, C. M. Probabilistic principal component analysis J. R. Stat. Soc., Ser. B 1999, 61, 611-622
-
(1999)
J. R. Stat. Soc., Ser. B
, vol.61
, pp. 611-622
-
-
Tipping, M.E.1
Bishop, C.M.2
-
38
-
-
84864380746
-
Bayesian analysis of iTRAQ data with nonrandom missingness: Identification of differentially expressed proteins
-
Luo, R.; Colangelo, C. M.; Sessa, W. C. Bayesian analysis of iTRAQ data with nonrandom missingness: identification of differentially expressed proteins Stat. Biosci. 2009, 1, 228-245
-
(2009)
Stat. Biosci.
, vol.1
, pp. 228-245
-
-
Luo, R.1
Colangelo, C.M.2
Sessa, W.C.3
-
39
-
-
84866459077
-
DanteR: An extensible R-based tool for quantitative analysis of -omics data
-
Taverner, T.; Karpievitch, Y. V.; Polpitiya, A. D. DanteR: an extensible R-based tool for quantitative analysis of -omics data Bioinformatics 2012, 28, 2404-2406
-
(2012)
Bioinformatics
, vol.28
, pp. 2404-2406
-
-
Taverner, T.1
Karpievitch, Y.V.2
Polpitiya, A.D.3
-
40
-
-
84878051310
-
Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs
-
Clough, T.; Thaminy, S.; Ragg, S. Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs BMC Bioinf. 2012, 13, S6
-
(2012)
BMC Bioinf.
, vol.13
, pp. 6
-
-
Clough, T.1
Thaminy, S.2
Ragg, S.3
-
41
-
-
46249116675
-
DAnTE: A statistical tool for quantitative analysis of -omics data
-
Polpitiya, A. D.; Qian, W. J.; Jaitly, N. DAnTE: a statistical tool for quantitative analysis of -omics data Bioinformatics 2008, 24, 1556-1558
-
(2008)
Bioinformatics
, vol.24
, pp. 1556-1558
-
-
Polpitiya, A.D.1
Qian, W.J.2
Jaitly, N.3
-
42
-
-
84861157792
-
Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles
-
Deeb, S. J.; D'Souza, R. C.; Cox, J. Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles Mol. Cell. Proteomics 2012, 11, 77-89
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 77-89
-
-
Deeb, S.J.1
D'Souza, R.C.2
Cox, J.3
-
43
-
-
77952344256
-
Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions
-
Hubner, N. C.; Bird, A. W.; Cox, J. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions J. Cell Biol. 2010, 189, 739-754
-
(2010)
J. Cell Biol.
, vol.189
, pp. 739-754
-
-
Hubner, N.C.1
Bird, A.W.2
Cox, J.3
-
44
-
-
78650554266
-
Biological impact of missing-value imputation on downstream analyses of gene expression profiles
-
Oh, S.; Kang, D. D.; Brock, G. N. Biological impact of missing-value imputation on downstream analyses of gene expression profiles Bioinformatics 2011, 27, 78-86
-
(2011)
Bioinformatics
, vol.27
, pp. 78-86
-
-
Oh, S.1
Kang, D.D.2
Brock, G.N.3
-
45
-
-
84909960219
-
Bayesian proteoform modeling improves protein quantification of global proteomic measurements
-
Webb-Robertson, B. J.; Matzke, M. M.; Datta, S. Bayesian proteoform modeling improves protein quantification of global proteomic measurements Mol. Cell. Proteomics 2014, 13, 3639-3646
-
(2014)
Mol. Cell. Proteomics
, vol.13
, pp. 3639-3646
-
-
Webb-Robertson, B.J.1
Matzke, M.M.2
Datta, S.3
-
46
-
-
84873987395
-
A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments
-
Matzke, M. M.; Brown, J. N.; Gritsenko, M. A. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments Proteomics 2013, 13, 493-503
-
(2013)
Proteomics
, vol.13
, pp. 493-503
-
-
Matzke, M.M.1
Brown, J.N.2
Gritsenko, M.A.3
-
47
-
-
82955187002
-
A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors
-
Webb-Robertson, B. J.; Matzke, M. M.; Jacobs, J. M. A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors Proteomics 2011, 11, 4736-4741
-
(2011)
Proteomics
, vol.11
, pp. 4736-4741
-
-
Webb-Robertson, B.J.1
Matzke, M.M.2
Jacobs, J.M.3
-
48
-
-
84874625369
-
Proteoform: A single term describing protein complexity
-
Smith, L. M.; Kelleher, N. L. Proteoform: a single term describing protein complexity Nat. Methods. 2013, 10, 186-187
-
(2013)
Nat. Methods.
, vol.10
, pp. 186-187
-
-
Smith, L.M.1
Kelleher, N.L.2
|