|
Volumn 9, Issue , 2008, Pages
|
Missing value imputation improves clustering and interpretation of gene expression microarray data
|
Author keywords
[No Author keywords available]
|
Indexed keywords
BIOLOGICAL INTERPRETATION;
EVALUATION APPROACH;
GENE EXPRESSION MICROARRAY;
IMPUTATION METHODS;
MICROARRAY DATA ANALYSIS;
MICROARRAY DATA SETS;
MISSING VALUE IMPUTATION;
PRINCIPAL COMPONENTS ALGORITHMS;
GENE EXPRESSION;
PRINCIPAL COMPONENT ANALYSIS;
AUTOCORRELATION;
ACCURACY;
ARTICLE;
BAYES THEOREM;
CLUSTER ANALYSIS;
CONTROLLED STUDY;
DATA ANALYSIS;
DNA MICROARRAY;
GENE CLUSTER;
GENE EXPRESSION PROFILING;
GENETIC ALGORITHM;
GENETIC DATABASE;
INTERMETHOD COMPARISON;
MATHEMATICAL COMPUTING;
MEASUREMENT;
MICROARRAY ANALYSIS;
REPRODUCIBILITY;
ALGORITHM;
ARTIFACT;
ARTIFICIAL INTELLIGENCE;
AUTOMATED PATTERN RECOGNITION;
COMPARATIVE STUDY;
COMPUTER SIMULATION;
CONFIDENCE INTERVAL;
FUZZY LOGIC;
INFORMATION RETRIEVAL;
METHODOLOGY;
REFERENCE VALUE;
SAMPLE SIZE;
SENSITIVITY AND SPECIFICITY;
STATISTICS;
ALGORITHMS;
ARTIFACTS;
ARTIFICIAL INTELLIGENCE;
CLUSTER ANALYSIS;
COMPUTER SIMULATION;
CONFIDENCE INTERVALS;
FUZZY LOGIC;
GENE EXPRESSION PROFILING;
INFORMATION STORAGE AND RETRIEVAL;
OLIGONUCLEOTIDE ARRAY SEQUENCE ANALYSIS;
PATTERN RECOGNITION, AUTOMATED;
REFERENCE VALUES;
SAMPLE SIZE;
SENSITIVITY AND SPECIFICITY;
|
EID: 43849094303
PISSN: None
EISSN: 14712105
Source Type: Journal
DOI: 10.1186/1471-2105-9-202 Document Type: Article |
Times cited : (62)
|
References (37)
|