메뉴 건너뛰기




Volumn 124, Issue , 2014, Pages 13-21

Manifold-preserving graph reduction for sparse semi-supervised learning

Author keywords

Graph reduction; Semi supervised learning; Sparsity; Statistical learning theory; Support vector machine

Indexed keywords

APPROXIMATION RATIOS; GENERALIZATION ERROR; GRAPH REDUCTION; RADEMACHER COMPLEXITY; SEMI-SUPERVISED LEARNING; SPARSITY; STATISTICAL LEARNING THEORY; SUPPORT VECTOR MACHINE (SVMS);

EID: 84885841484     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.08.070     Document Type: Article
Times cited : (46)

References (29)
  • 1
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities. risk bounds and structural results
    • Bartlett P., Mendelson S. Rademacher and Gaussian complexities. risk bounds and structural results. J. Mach. Learn. Res. 2002, 3:463-482.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 463-482
    • Bartlett, P.1    Mendelson, S.2
  • 2
    • 70350682021 scopus 로고    scopus 로고
    • Proceedings of the 41st Annual ACM Symposium on the Theory of Computing
    • J. Batson, D. Spielman, N. Srivastava, Twice-Ramanujan sparsifiers, in: Proceedings of the 41st Annual ACM Symposium on the Theory of Computing, 2009, pp. 255-262.
    • (2009) Twice-Ramanujan sparsifiers , pp. 255-262
    • Batson, J.1    Spielman, D.2    Srivastava, N.3
  • 3
    • 9444289383 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • M. Belkin, I. Matveeva, P. Niyogi, Regularization and semi-supervised learning on large graphs, Lect. Notes Comput. Sci. 3120 (2004) 624-638.
    • (2004) Lect. Notes Comput. Sci , vol.3120 , pp. 624-638
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15:1373-1396.
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • Belkin M., Niyogi P. Semi-supervised learning on Riemannian manifolds. Mach. Learn. 2004, 56:209-239.
    • (2004) Mach. Learn. , vol.56 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization. a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization. a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 8
    • 38049049130 scopus 로고    scopus 로고
    • Transductive Rademacher complexity and its applications
    • R. El-Yaniv, D. Pechyony, Transductive Rademacher complexity and its applications, Lect. Notes Comput. Sci. 4539 (2007) 157-171.
    • (2007) Lect. Notes Comput. Sci , vol.4539 , pp. 157-171
    • El-Yaniv, R.1    Pechyony, D.2
  • 9
    • 48349091260 scopus 로고    scopus 로고
    • Large margin vs. large volume in transductive learning
    • El-Yaniv R., Pechyony D., Vapnik V. Large margin vs. large volume in transductive learning. Mach. Learn. 2008, 72:173-188.
    • (2008) Mach. Learn. , vol.72 , pp. 173-188
    • El-Yaniv, R.1    Pechyony, D.2    Vapnik, V.3
  • 10
    • 34547696887 scopus 로고    scopus 로고
    • On the effectiveness of Laplacian normalization for graph semi-supervised learning
    • Johnson R., Zhang T. On the effectiveness of Laplacian normalization for graph semi-supervised learning. J. Mach. Learn. Res. 2007, 8:1489-1517.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1489-1517
    • Johnson, R.1    Zhang, T.2
  • 11
    • 38349114023 scopus 로고    scopus 로고
    • Graph-based semi-supervised learning and spectral kernel design
    • Johnson R., Zhang T. Graph-based semi-supervised learning and spectral kernel design. IEEE Trans. Inf. Theory 2008, 54:275-288.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , pp. 275-288
    • Johnson, R.1    Zhang, T.2
  • 12
    • 76649088030 scopus 로고    scopus 로고
    • A better approximation ratio for the vertex cover problem
    • Article 41
    • Karakostas G. A better approximation ratio for the vertex cover problem. ACM Trans. Algorithms 2009, 5. Article 41.
    • (2009) ACM Trans. Algorithms , vol.5
    • Karakostas, G.1
  • 13
    • 77949496006 scopus 로고
    • Reducibility among combinatorial problems
    • Karp R., Miller R., Thatcher J. Reducibility among combinatorial problems. J. Symb. Logic 1975, 40:618-619.
    • (1975) J. Symb. Logic , vol.40 , pp. 618-619
    • Karp, R.1    Miller, R.2    Thatcher, J.3
  • 14
    • 38149105774 scopus 로고    scopus 로고
    • Vertex cover might be hard to approximate to within 2-ε
    • Khot S., Regev O. Vertex cover might be hard to approximate to within 2-ε. J. Comput. Syst. Sci. 2008, 74:335-349.
    • (2008) J. Comput. Syst. Sci. , vol.74 , pp. 335-349
    • Khot, S.1    Regev, O.2
  • 15
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • Kimeldorf G., Wahba G. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 1971, 33:82-95.
    • (1971) J. Math. Anal. Appl. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 16
    • 0000880364 scopus 로고
    • On the best constant in the Khintchine-Kahane inequality
    • Latala R., Oleszkiewicz K. On the best constant in the Khintchine-Kahane inequality. Studia Math. 1994, 109:101-104.
    • (1994) Studia Math. , vol.109 , pp. 101-104
    • Latala, R.1    Oleszkiewicz, K.2
  • 17
    • 0026366408 scopus 로고
    • Optimization, approximation, and complexity classes
    • Papadimitriou C., Yannakakis M. Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 1991, 43:425-440.
    • (1991) J. Comput. Syst. Sci. , vol.43 , pp. 425-440
    • Papadimitriou, C.1    Yannakakis, M.2
  • 18
    • 84862283080 scopus 로고    scopus 로고
    • The Rademacher complexity of co-regularized kernel classes
    • Workshop Conf. Proceed
    • D. Rosenberg, P. Bartlett, The Rademacher complexity of co-regularized kernel classes, J. Mach. Learn. Res. Workshop Conf. Proceed. 2 (2007) 396-403.
    • (2007) J. Mach. Learn. Res , vol.2 , pp. 396-403
    • Rosenberg, D.1    Bartlett, P.2
  • 19
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 20
    • 34547728320 scopus 로고    scopus 로고
    • Sampling from large matrices. an approach through geometric functional analysis
    • (Article 21)
    • Rudelson M., Vershynin R. Sampling from large matrices. an approach through geometric functional analysis. J. ACM 2007, 54. (Article 21).
    • (2007) J. ACM , vol.54
    • Rudelson, M.1    Vershynin, R.2
  • 25
    • 57049148610 scopus 로고    scopus 로고
    • Graph sparsification by effective resistances
    • Proceedings of the 40th Annual ACM Symposium on the Theory of Computing
    • D. Spielman, N. Srivastava, Graph sparsification by effective resistances, in: Proceedings of the 40th Annual ACM Symposium on the Theory of Computing, 2008, pp. 563-568.
    • (2008) , pp. 563-568
    • Spielman, D.1    Srivastava, N.2
  • 26
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., de Silva V., Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    de Silva, V.2    Langford, J.3
  • 27
    • 84864041407 scopus 로고    scopus 로고
    • Large-scale sparsified manifold regularization
    • Tsang I., Kwok J. Large-scale sparsified manifold regularization. Adv. Neural Inf. Process. Syst. 2007, 19:1401-1408.
    • (2007) Adv. Neural Inf. Process. Syst. , vol.19 , pp. 1401-1408
    • Tsang, I.1    Kwok, J.2
  • 28
    • 84864072823 scopus 로고    scopus 로고
    • Analysis of spectral kernel design based semi-supervised learning
    • Zhang T., Ando R. Analysis of spectral kernel design based semi-supervised learning. Adv. Neural Inf. Process. Syst. 2006, 18:1601-1608.
    • (2006) Adv. Neural Inf. Process. Syst. , vol.18 , pp. 1601-1608
    • Zhang, T.1    Ando, R.2
  • 29
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised Learning Literature Survey
    • University of Wisconsin-Madison
    • X. Zhu, Semi-supervised Learning Literature Survey, Technical Report 1530, University of Wisconsin-Madison, 2008.
    • (2008) Technical Report 1530
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.