메뉴 건너뛰기




Volumn 97, Issue 1, 2010, Pages 49-64

Functional quadratic regression

Author keywords

Absorption spectra; Asymptotics; Functional data analysis; Polynomial regression; Prediction; Principal component

Indexed keywords


EID: 77249159873     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asp069     Document Type: Article
Times cited : (126)

References (29)
  • 1
    • 0000203752 scopus 로고
    • Optimal minimal neural interpretation of spectra
    • BORGGAARD, C. & THODBERG, H. (1992). Optimal minimal neural interpretation of spectra. Analyt. Chem. 64, 545-551
    • (1992) Analyt. Chem. , vol.64 , pp. 545-551
    • Borggaard, C.1    Thodberg, H.2
  • 2
    • 33847349358 scopus 로고    scopus 로고
    • Prediction in functional linear regression
    • CAI, T. & HALL, P. (2006). Prediction in functional linear regression. Ann. Statist. 34, 2159-2179
    • (2006) Ann. Statist. , vol.34 , pp. 2159-2179
    • Cai, T.1    Hall, P.2
  • 4
    • 6444240715 scopus 로고    scopus 로고
    • Estimation in generalized linear models for functional data via penalized likelihood
    • CARDOT, H. & SARDA, P. (2005). Estimation in generalized linear models for functional data via penalized likelihood. J. Mult. Anal. 92, 24-41.
    • (2005) J. Mult. Anal. , vol.92 , pp. 24-41
    • Cardot, H.1    Sarda, P.2
  • 5
    • 0022806525 scopus 로고
    • Principal modes of variation for processes with continuous sample curves
    • CASTRO, P. E., LAWTON, W. H. & SYLVESTRE, E. A. (1986). Principal modes of variation for processes with continuous sample curves. Technometrics 28, 329-337
    • (1986) Technometrics , vol.28 , pp. 329-337
    • Castro, P.E.1    Lawton, W.H.2    Sylvestre, E.A.3
  • 6
    • 0031197999 scopus 로고    scopus 로고
    • Regression analysis for a functional response
    • FARAWAY, J. J. (1997). Regression analysis for a functional response. Technometrics 39, 254-261
    • (1997) Technometrics , vol.39 , pp. 254-261
    • Faraway, J.J.1
  • 7
    • 35348874516 scopus 로고    scopus 로고
    • Methodology and convergence rates for functional linear regression
    • HALL, P. & HOROWITZ, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35, 70-91.
    • (2007) Ann. Statist. , vol.35 , pp. 70-91
    • Hall, P.1    Horowitz, J.L.2
  • 8
    • 33645039219 scopus 로고    scopus 로고
    • On properties of functional principal components analysis
    • HALL, P. & HOSSEINI-NASAB, M. (2006). On properties of functional principal components analysis. J. R. Statist. Soc. B 68, 109-126
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 109-126
    • Hall, P.1    Hosseini-Nasab, M.2
  • 9
    • 0037993212 scopus 로고    scopus 로고
    • Extending correlation and regression from multivariate to functional data
    • Ed. M. L. Puri, Leiden, Netherlands: VSP International Science Publishers
    • HE, G.,MÜLLER, H. G.&WANG, J. L. (2000). Extending correlation and regression from multivariate to functional data. In Asymptotics in Statistics and Probability, Ed. M. L. Puri, pp. 301-315. Leiden, Netherlands: VSP International Science Publishers.
    • (2000) Asymptotics in Statistics and Probability , pp. 301-315
    • He, G.1    Müller, H.G.2    Wang, J.L.3
  • 10
    • 23044444245 scopus 로고    scopus 로고
    • Variation in continuous reaction norms: Quantifying directions of biological interest
    • IZEM, R.&KINGSOLVER, J. (2005). Variation in continuous reaction norms: quantifying directions of biological interest. Am. Naturalist 166, 277-289
    • (2005) Am. Naturalist , vol.166 , pp. 277-289
    • Izem, R.1    Kingsolver, J.2
  • 11
    • 0001699048 scopus 로고    scopus 로고
    • Principal component models for sparse functional data
    • JAMES, G. M.,HASTIE, T. J. & SUGAR, C. A. (2000). Principal component models for sparse functional data. Biometrika 87, 587-602.
    • (2000) Biometrika , vol.87 , pp. 587-602
    • James, G.M.1    Hastie, T.J.2    Sugar, C.A.3
  • 12
    • 84887505391 scopus 로고
    • Displaying the important features of large collections of similar curves
    • JONES, M. C. & RICE, J. A. (1992). Displaying the important features of large collections of similar curves. Am. Statistician 46, 140-145
    • (1992) Am. Statistician , vol.46 , pp. 140-145
    • Jones, M.C.1    Rice, J.A.2
  • 13
    • 0024330924 scopus 로고
    • A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters
    • KIRKPATRICK, M. & HECKMAN, N. (1989). A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J. Math. Biol. 27, 429-450
    • (1989) J. Math. Biol. , vol.27 , pp. 429-450
    • Kirkpatrick, M.1    Heckman, N.2
  • 14
    • 66549101908 scopus 로고    scopus 로고
    • Estimating derivatives for samples of sparsely observed functions, with application to on-line auction dynamics
    • LIU, B. & MÜLLER, H.-G. (2009). Estimating derivatives for samples of sparsely observed functions, with application to on-line auction dynamics. J. Am. Statist. Assoc. 104, 704-714
    • (2009) J. Am. Statist. Assoc. , vol.104 , pp. 704-714
    • Liu, B.1    Müller, H.-G.2
  • 15
    • 17444410261 scopus 로고    scopus 로고
    • Designs for estimating an extremal point of quadratic regression models in a hyperball
    • DOI 10.1007/s001840200237
    • MELAS, V., PEPELYSHEV, A. & CHENG, R. (2003). Designs for estimating an extremal point of quadratic regression models in a hyperball. Metrika 58, 193-208. (Pubitemid 40549733)
    • (2003) Metrika , vol.58 , Issue.2 , pp. 193-208
    • Melas, V.B.1    Pepelyshev, A.2    Cheng, R.C.H.3
  • 16
    • 33644782020 scopus 로고    scopus 로고
    • Wavelet-based functional mixed models
    • MORRIS, J. S. & CARROLL, R. J. (2006). Wavelet-based functional mixed models. J. R. Statist. Soc. B 68, 179-199
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 179-199
    • Morris, J.S.1    Carroll, R.J.2
  • 17
    • 19744371683 scopus 로고    scopus 로고
    • Functional modelling and classification of longitudinal data
    • MÜLLER, H.-G. (2005). Functional modelling and classification of longitudinal data. Scand. J. Statist. 32, 223-240
    • (2005) Scand. J. Statist. , vol.32 , pp. 223-240
    • Müller, H.-G.1
  • 18
    • 19744368468 scopus 로고    scopus 로고
    • Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories
    • MÜLLER, H.-G.&ZHANG,Y. (2005). Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories. Biometrics 61, 1064-1075
    • (2005) Biometrics , vol.61 , pp. 1064-1075
    • Müller, H.-G.1    Zhang, Y.2
  • 19
    • 0001501999 scopus 로고
    • Some tools for functional data analysis
    • RAMSAY, J. O. & DALZELL, C. J. (1991). Some tools for functional data analysis. J. R. Statist. Soc. B 53, 539-572
    • (1991) J. R. Statist. Soc. B , vol.53 , pp. 539-572
    • Ramsay, J.O.1    Dalzell, C.J.2
  • 22
    • 8644231058 scopus 로고    scopus 로고
    • Functional and longitudinal data analysis: Perspectives on smoothing
    • RICE, J. A. (2004). Functional and longitudinal data analysis: perspectives on smoothing. Statist. Sinica 631-647
    • (2004) Statist. Sinica , pp. 631-647
    • Rice, J.A.1
  • 23
    • 0001597980 scopus 로고
    • Estimating the mean and covariance structure nonparametrically when the data are curves
    • RICE, J. A. & SILVERMAN, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. R. Statist. Soc. B 53, 233-243
    • (1991) J. R. Statist. Soc. B , vol.53 , pp. 233-243
    • Rice, J.A.1    Silverman, B.W.2
  • 24
    • 12344320182 scopus 로고    scopus 로고
    • An F test for linear models with functional responses
    • SHEN, Q. & FARAWAY, J. (2004). An F test for linear models with functional responses. Statist. Sinica 14, 1239-1257
    • (2004) Statist. Sinica , vol.14 , pp. 1239-1257
    • Shen, Q.1    Faraway, J.2
  • 26
    • 33645031408 scopus 로고    scopus 로고
    • Penalized spline models for functional principal component analysis
    • YAO, F. & LEE, T. C.M. (2006). Penalized spline models for functional principal component analysis. J. R. Statist. Soc. B 68, 3-25.
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 3-25
    • Yao, F.1    Lee C. T, M.2
  • 27
    • 19744375466 scopus 로고    scopus 로고
    • Functional data analysis for sparse longitudinal data
    • YAO, F.,MÜLLER, H.-G.&WANG, J.-L. (2005a). Functional data analysis for sparse longitudinal data. J. Am. Statist. Assoc. 100, 577-590
    • (2005) J. Am. Statist. Assoc. , vol.100 , pp. 577-590
    • Yao, F.1    Müller, H.-G.2    Wang, J.-L.3
  • 28
    • 19744369661 scopus 로고    scopus 로고
    • Functional linear regression analysis for longitudinal data
    • YAO, F., MÜLLER, H.-G. & WANG, J.-L. (2005b). Functional linear regression analysis for longitudinal data. Ann. Statist. 33, 2873-2903.
    • (2005) Ann. Statist. , vol.33 , pp. 2873-2903
    • Yao, F.1    Müller, H.-G.2    Wang, J.-L.3
  • 29
    • 8644276476 scopus 로고    scopus 로고
    • The functional data analysis view of longitudinal data
    • ZHAO, X.,MARRON, J. S.&WELLS,M. T. (2004). The functional data analysis view of longitudinal data. Statist. Sinica 14, 789-808.
    • (2004) Statist. Sinica , vol.14 , pp. 789-808
    • Zhao, X.1    Marron, J.S.2    Wells, M.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.