메뉴 건너뛰기




Volumn 5, Issue 1, 2012, Pages 117-136

Statistical methods for proteomic biomarker discovery based on feature extraction or functional modeling approaches

(1)  Morris, Jeffrey S a  

a NONE   (United States)

Author keywords

2D gel electrophoresis; Bayesian methods; Biomarkers; Classification; False discovery rate; Functional data analysis; Functional mixed models; Maldi tof; Mass spectrometry; Multiple testing; Nonparametric regression; Proteomics; Reproducibility; Robust regression; Wavelets

Indexed keywords


EID: 84864384339     PISSN: 19387989     EISSN: 19387997     Source Type: Journal    
DOI: 10.4310/sii.2012.v5.n1.a11     Document Type: Article
Times cited : (11)

References (72)
  • 1
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • Aebersold, R. and Mann, M. Mass spectrometry-based proteomics. Nature, 422:198-207, 2003.
    • (2003) Nature , vol.422 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 2
    • 0032500737 scopus 로고    scopus 로고
    • Transition from moderate to excessive drug intake: Change in hedonic set point
    • Ahmed, S. H. and Koob, G. F. Transition from moderate to excessive drug intake: Change in hedonic set point. Science, 282(5387):298-300, 1998.
    • (1998) Science , vol.282 , Issue.5387 , pp. 298-300
    • Ahmed, S.H.1    Koob, G.F.2
  • 3
    • 34548536094 scopus 로고    scopus 로고
    • The high-dimension, low-sample-size geometric representation holds under mild conditions
    • Ahn, J., Marron, J. S., Muller, K. M., and Chi, Y. Y. The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika, 94:760-766, 2007.
    • (2007) Biometrika , vol.94 , pp. 760-766
    • Ahn, J.1    Marron, J.S.2    Muller, K.M.3    Chi, Y.Y.4
  • 4
    • 84873899821 scopus 로고    scopus 로고
    • Bias, randomization, and overian proteomic data
    • Baggerly, K. A., Coombes, K. R., and Morris, J. S. Bias, randomization, and overian proteomic data. Cancer Informatics, 1(1):9-14, 2005.
    • (2005) Cancer Informatics , vol.1 , Issue.1 , pp. 9-14
    • Baggerly, K.A.1    Coombes, K.R.2    Morris, J.S.3
  • 5
    • 11244324762 scopus 로고    scopus 로고
    • High-resolution serum proteomic patterns for ovarian cancer detection
    • Baggerly, K. A., Edmonson, S., Morris, J. S., and Coombes, K. R. High-resolution serum proteomic patterns for ovarian cancer detection. Endocrine-Related Cancers, 11(4):583-584, 2004.
    • (2004) Endocrine-Related Cancers , vol.11 , Issue.4 , pp. 583-584
    • Baggerly, K.A.1    Edmonson, S.2    Morris, J.S.3    Coombes, K.R.4
  • 6
    • 1842559788 scopus 로고    scopus 로고
    • Reproducibility of seldi mass spectrometry patterns in serum: Comparing proteomic data sets from different experiments
    • Baggerly, K. A., Morris, J. S., and Coombesand, K. R. Reproducibility of seldi mass spectrometry patterns in serum: Comparing proteomic data sets from different experiments. Bioinformatics, 20(5):777-785, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.5 , pp. 777-785
    • Baggerly, K.A.1    Morris, J.S.2    Coombesand, K.R.3
  • 7
    • 13844316757 scopus 로고    scopus 로고
    • Reproducibility of seldi-tof protein patterns in serum: Comparing datasets from different experiments
    • Baggerly, K. A., Morris, J. S., Edmonson, S., and Coombesand, K. R. Reproducibility of seldi-tof protein patterns in serum: Comparing datasets from different experiments. Journal of the National Cancer Institute, 97:307-309, 2005.
    • (2005) Journal of the National Cancer Institute , vol.97 , pp. 307-309
    • Baggerly, K.A.1    Morris, J.S.2    Edmonson, S.3    Coombesand, K.R.4
  • 8
    • 27644476898 scopus 로고    scopus 로고
    • Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
    • Baik, J., Arous, G. B., and Peche, S. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Annals of Probablity, 33:1643-1697, 2005.
    • (2005) Annals of Probablity , vol.33 , pp. 1643-1697
    • Baik, J.1    Arous, G.B.2    Peche, S.3
  • 9
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • Baik, J. and Silverstein, J. W. Eigenvalues of large sample covariance matrices of spiked population models. Journal of Multivariate Analysis, 97:1382-1408, 2006.
    • (2006) Journal of Multivariate Analysis , vol.97 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 10
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. JRSS-B, 57:289-300, 1995.
    • (1995) JRSS-B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 11
    • 0033472708 scopus 로고    scopus 로고
    • A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence
    • Benjamini, Y. and Liu, W. A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference, 82:163-170, 1999.
    • (1999) Journal of Statistical Planning and Inference , vol.82 , pp. 163-170
    • Benjamini, Y.1    Liu, W.2
  • 12
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar
    • Bondell, H. D. and Reich, B. J. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar. Biometrics, 64:115-123, 2008.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 13
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • Carvalho, C. M., Polson, N. G., and Scott, J. G. The horseshoe estimator for sparse signals. Biometrika, 97(2):465-480, 2010.
    • (2010) Biometrika , vol.97 , Issue.2 , pp. 465-480
    • Carvalho, C.M.1    Polson, N.G.2    Scott, J.G.3
  • 14
    • 33748582940 scopus 로고    scopus 로고
    • A bayesian determination of threshold for identifying differentially expressed genes in microarray experiments
    • Chen, J. and Sarkar, S. K. A bayesian determination of threshold for identifying differentially expressed genes in microarray experiments. Statistics in Medicine, 25:3174-3189, 2006.
    • (2006) Statistics in Medicine , vol.25 , pp. 3174-3189
    • Chen, J.1    Sarkar, S.K.2
  • 15
    • 41549140487 scopus 로고    scopus 로고
    • The myth of automated, highthroughput two-dimensional gel analysis
    • Clark, B. N. and Gutstein, H. B. The myth of automated, highthroughput two-dimensional gel analysis. Proteomics, 8:1197-1203, 2008.
    • (2008) Proteomics , vol.8 , pp. 1197-1203
    • Clark, B.N.1    Gutstein, H.B.2
  • 17
    • 18744411077 scopus 로고    scopus 로고
    • Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform
    • Coombes, K. R., Tsavachidis, S., Morris, J. S., Baggerly, K. A., Hung, M. C., and Kuerer, H. M. Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics, 5:4107-4117, 2005.
    • (2005) Proteomics , vol.5 , pp. 4107-4117
    • Coombes, K.R.1    Tsavachidis, S.2    Morris, J.S.3    Baggerly, K.A.4    Hung, M.C.5    Kuerer, H.M.6
  • 19
    • 18744378860 scopus 로고    scopus 로고
    • Empirical bayes screening of many pvalues with applications to microarray studies
    • Datta, S. and Datta, S. Empirical bayes screening of many pvalues with applications to microarray studies. Bioinformatics, 21(9):1987-1994, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1987-1994
    • Datta, S.1    Datta, S.2
  • 20
    • 41349096900 scopus 로고    scopus 로고
    • Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics
    • Deutsch, E. W., Lam, H., and Aebersold, R. Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol Genomics, 33(1):18-25, 2008.
    • (2008) Physiol Genomics , vol.33 , Issue.1 , pp. 18-25
    • Deutsch, E.W.1    Lam, H.2    Aebersold, R.3
  • 21
    • 41349119605 scopus 로고    scopus 로고
    • Automated image alignment for 2d gel electrophoresis in a high-throughput proteomics pipeline
    • Dowsey, A., Dunn, M., and Yang, G. Automated image alignment for 2d gel electrophoresis in a high-throughput proteomics pipeline. Bioinformatics, 24:950-957, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 950-957
    • Dowsey, A.1    Dunn, M.2    Yang, G.3
  • 23
    • 78649682281 scopus 로고    scopus 로고
    • Image analysis tools and emerging algorithms for expression proteomics
    • Dowsey, A. W., English, J. A., Lisacek, F., Morris, J. S., Yang, G. Z., and Dunn, M. J. Image analysis tools and emerging algorithms for expression proteomics. Proteomics, 10(23):4226-4257, 2010.
    • (2010) Proteomics , vol.10 , Issue.23 , pp. 4226-4257
    • Dowsey, A.W.1    English, J.A.2    Lisacek, F.3    Morris, J.S.4    Yang, G.Z.5    Dunn, M.J.6
  • 24
  • 26
    • 2142732441 scopus 로고    scopus 로고
    • Large-scale simultaneous hypothesis testing: The choice of a null hypothesis
    • Efron, B. Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association, 99:96-104, 2004.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 96-104
    • Efron, B.1
  • 27
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. JASA, 96(456):1348-1360, 2001.
    • (2001) JASA , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 28
    • 0024438708 scopus 로고
    • Electrospray ionization for mass spectrometry of large biomolecules
    • Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926):64-71, 1989.
    • (1989) Science , vol.246 , Issue.4926 , pp. 64-71
    • Fenn, J.B.1    Mann, M.2    Meng, C.K.3    Wong, S.F.4    Whitehouse, C.M.5
  • 29
    • 0036020944 scopus 로고    scopus 로고
    • Operating characteristics and extensions of the false discovery rate procedure
    • Genovese, C. and Wasserman, L. Operating characteristics and extensions of the false discovery rate procedure. JRSS-B, 64:499-517, 2002.
    • (2002) JRSS-B , vol.64 , pp. 499-517
    • Genovese, C.1    Wasserman, L.2
  • 32
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • Hall, P., Marron, J. S., and Neeman, A. Geometric representation of high dimension, low sample size data. JRSS-B, 67:427-444, 2005.
    • (2005) JRSS-B , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 34
    • 16344384887 scopus 로고    scopus 로고
    • The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales
    • Hu, J., Coombes, K. R., Morris, J. S., and Baggerly, K. A. The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales. Briefings in Functional Genomics and Proteomics, 3(4):322-331, 2005.
    • (2005) Briefings in Functional Genomics and Proteomics , vol.3 , Issue.4 , pp. 322-331
    • Hu, J.1    Coombes, K.R.2    Morris, J.S.3    Baggerly, K.A.4
  • 35
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using bayesian model selection
    • Ishwaran, H. and Rao, J. S. Detecting differentially expressed genes in microarrays using bayesian model selection. Journal of the American Statistical Association, 98:438-455, 2003.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 438-455
    • Ishwaran, H.1    Rao, J.S.2
  • 36
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal component analysis
    • Johnstone, I. On the distribution of the largest eigenvalue in principal component analysis. Annals of Statistics, 29:295-327, 2001.
    • (2001) Annals of Statistics , vol.29 , pp. 295-327
    • Johnstone, I.1
  • 37
    • 70249103304 scopus 로고    scopus 로고
    • Pca consistency in high dimension, low sample size context
    • Jung, S. and Marron, J. S. Pca consistency in high dimension, low sample size context. The Annals of Statistics, 37(6B):4104-4130, 2009.
    • (2009) The Annals of Statistics , vol.37 , Issue.6 B , pp. 4104-4130
    • Jung, S.1    Marron, J.S.2
  • 39
    • 23844491490 scopus 로고    scopus 로고
    • Maximizing sensitivity for detecting changes in protein expression: Experimental design using minimal cydyes
    • Karp, N. A. and Lilley, K. S. Maximizing sensitivity for detecting changes in protein expression: Experimental design using minimal cydyes. Proteomics, 5:3105-3115, 2005.
    • (2005) Proteomics , vol.5 , pp. 3105-3115
    • Karp, N.A.1    Lilley, K.S.2
  • 42
    • 57749084635 scopus 로고    scopus 로고
    • A general framework for multiple testing dependence
    • Leek, J. T. and Storey, J. D. A general framework for multiple testing dependence. PNAS, 105(48):18718-18723, 2008.
    • (2008) PNAS , vol.105 , Issue.48 , pp. 18718-18723
    • Leek, J.T.1    Storey, J.D.2
  • 43
  • 45
    • 80054689503 scopus 로고    scopus 로고
    • Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data
    • Morris, J. S., Baladandayuthapani, V., Herrick, R. C., Sanna, P., and Gutstein, H. Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. Annals of Applied Statistics, 5(2A):894-923, 2011.
    • (2011) Annals of Applied Statistics , vol.5 , Issue.2 A , pp. 894-923
    • Morris, J.S.1    Baladandayuthapani, V.2    Herrick, R.C.3    Sanna, P.4    Gutstein, H.5
  • 46
    • 43949121435 scopus 로고    scopus 로고
    • Bayesian analysis of mass spectrometry data using wavelet-based functional mixed models
    • Morris, J. S., Brown, P., Herrick, R., Baggerly, K., and Coombes, K. Bayesian analysis of mass spectrometry data using wavelet-based functional mixed models. Biometrics, 12:479-489, 2008.
    • (2008) Biometrics , vol.12 , pp. 479-489
    • Morris, J.S.1    Brown, P.2    Herrick, R.3    Baggerly, K.4    Coombes, K.5
  • 48
    • 39149101842 scopus 로고    scopus 로고
    • Pinnacle: A fast, automatic and accurate method for detecting and quantifying protein spots in 2-dimensional gel electrophoresis data
    • Morris, J. S., Clark, B., and Gutstein, H. Pinnacle: A fast, automatic and accurate method for detecting and quantifying protein spots in 2-dimensional gel electrophoresis data. Bioinformatics, 24:529-536, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 529-536
    • Morris, J.S.1    Clark, B.2    Gutstein, H.3
  • 49
    • 73649131617 scopus 로고    scopus 로고
    • Evaluating the performance of new approaches to spot quantification and differential expression in 2-dimensional gel electrophoresis studies
    • Morris, J. S., Clark, B. N., Wei, W., and Gutstein, H. B. Evaluating the performance of new approaches to spot quantification and differential expression in 2-dimensional gel electrophoresis studies. Journal of Proteome Research, 9(1):595-604, 2010.
    • (2010) Journal of Proteome Research , vol.9 , Issue.1 , pp. 595-604
    • Morris, J.S.1    Clark, B.N.2    Wei, W.3    Gutstein, H.B.4
  • 50
    • 18744384734 scopus 로고    scopus 로고
    • Feature extraction and quantification for mass spectrometry data in biomedical applications using the mean spectrum
    • Morris, J. S., Coombes, K., Kooman, J., Baggerly, K., and Kobayashi, R. Feature extraction and quantification for mass spectrometry data in biomedical applications using the mean spectrum. Bioinformatics, 21:1764-1775, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1764-1775
    • Morris, J.S.1    Coombes, K.2    Kooman, J.3    Baggerly, K.4    Kobayashi, R.5
  • 51
    • 0242679450 scopus 로고    scopus 로고
    • Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis
    • with discussion
    • Morris, J. S., Vannucci, M., Brown, P. J., and Carroll, R. J. Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis. Journal of the American Statistical Association, 98(463):573-583, 2003. with discussion.
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.463 , pp. 573-583
    • Morris, J.S.1    Vannucci, M.2    Brown, P.J.3    Carroll, R.J.4
  • 52
    • 38649095599 scopus 로고    scopus 로고
    • An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data
    • Mueller, L. N., Brusniak, M. Y., Mani, D. R., and Aebersold, R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. Journal of Proteome Research, 7(1):51-61, 2008.
    • (2008) Journal of Proteome Research , vol.7 , Issue.1 , pp. 51-61
    • Mueller, L.N.1    Brusniak, M.Y.2    Mani, D.R.3    Aebersold, R.4
  • 53
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics, 5(2):155-176, 2004.
    • (2004) Biostatistics , vol.5 , Issue.2 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 54
    • 0016711037 scopus 로고
    • High-resolution two-dimensional electrophoresis of proteins
    • O'Farrell, P. H. High-resolution two-dimensional electrophoresis of proteins. J Biol Chem, 250:4007-4021, 1975.
    • (1975) J Biol Chem , vol.250 , pp. 4007-4021
    • O'Farrell, P.H.1
  • 56
    • 69249230467 scopus 로고    scopus 로고
    • A review of bayesian variable selection methods:What, how and which
    • O'Hara, R. B. and Sillanpaa, M. J. A review of bayesian variable selection methods:What, how and which. Bayesian Analysis, 4(1):85-118, 2009.
    • (2009) Bayesian Analysis , vol.4 , Issue.1 , pp. 85-118
    • O'Hara, R.B.1    Sillanpaa, M.J.2
  • 57
    • 0029120432 scopus 로고
    • Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine
    • Parsons, L. H., Koob, G. F., and Weiss, F. Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. Journal of Pharmacology and Experimental Therapeutics, 274:1182-1191, 1995.
    • (1995) Journal of Pharmacology and Experimental Therapeutics , vol.274 , pp. 1182-1191
    • Parsons, L.H.1    Koob, G.F.2    Weiss, F.3
  • 58
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • Paul, D. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistical Sinica, 17:1617-1642, 2007.
    • (2007) Statistical Sinica , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 59
    • 4444294164 scopus 로고    scopus 로고
    • Improving false discovery rate estimation
    • Pounds, S. and Cheng, C. Improving false discovery rate estimation. Bioinformatics, 20(11):1737-1745, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1737-1745
    • Pounds, S.1    Cheng, C.2
  • 60
    • 0038156106 scopus 로고    scopus 로고
    • Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values
    • Pounds, S. and Morris, S. W. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics, 19(10):1236-1242, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1236-1242
    • Pounds, S.1    Morris, S.W.2
  • 63
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • Storey, J. D. A direct approach to false discovery rates. JRSS-B, 64:479-498, 2002.
    • (2002) JRSS-B , vol.64 , pp. 479-498
    • Storey, J.D.1
  • 64
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A bayesian interpretation and the q-value
    • Storey, J. D. The positive false discovery rate: A bayesian interpretation and the q-value. The Annals of Statistics, 31:2013-2035, 2003.
    • (2003) The Annals of Statistics , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 65
    • 47749156020 scopus 로고    scopus 로고
    • A unified approach to false discovery rate estimation
    • Strimmer, K. A unified approach to false discovery rate estimation. BMC Bioinformatics, 9:303, 2008.
    • (2008) BMC Bioinformatics , vol.9 , pp. 303
    • Strimmer, K.1
  • 66
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. J. Regression shrinkage and selection via the lasso. JRSS-B, 58:267-288, 1996.
    • (1996) JRSS-B , vol.58 , pp. 267-288
    • Tibshirani, R.J.1
  • 67
    • 33644860426 scopus 로고    scopus 로고
    • Bios Scientific Publishers, Taylor & Francis Groups, Independence, KY
    • Twyman, R. M. Principles of Proteomics. Bios Scientific Publishers, Taylor & Francis Groups, Independence, KY, 2004.
    • (2004) Principles of Proteomics
    • Twyman, R.M.1
  • 69
    • 0033472709 scopus 로고    scopus 로고
    • Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics
    • Yekutielli, D. and Benjamini, Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference, 82:171-196, 1999.
    • (1999) Journal of Statistical Planning and Inference , vol.82 , pp. 171-196
    • Yekutielli, D.1    Benjamini, Y.2
  • 70
    • 80054702555 scopus 로고    scopus 로고
    • Robust adaptive functional regression in functional mixed model framework
    • Zhu, H., Brown, P. J., and Morris, J. S. Robust, adaptive functional regression in functional mixed model framework. JASA, 106(495):1167-1179, 2011.
    • (2011) JASA , vol.106 , Issue.495 , pp. 1167-1179
    • Zhu, H.1    Brown, P.J.2    Morris, J.S.3
  • 72
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. The adaptive lasso and its oracle properties. JASA, 101:1418-1429, 2006.
    • (2006) JASA , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.