-
1
-
-
33748742519
-
Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue
-
Cancello, R., and K. Clément. 2006. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG 113:1141-1147.
-
(2006)
BJOG
, vol.113
, pp. 1141-1147
-
-
Cancello, R.1
Clément, K.2
-
2
-
-
79960873697
-
Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction
-
Dalmas, E., C. Rouault, M. Abdennour, C. Rovere, S. Rizkalla, A. Bar-Hen, J.-L. Nahon, J.-L. Bouillot, M. Guerre-Millo, K. Clément, and C. Poitou. 2011. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am. J. Clin. Nutr. 94:450-458.
-
(2011)
Am. J. Clin. Nutr.
, vol.94
, pp. 450-458
-
-
Dalmas, E.1
Rouault, C.2
Abdennour, M.3
Rovere, C.4
Rizkalla, S.5
Bar-Hen, A.6
Nahon, J.-L.7
Bouillot, J.-L.8
Guerre-Millo, M.9
Clément, K.10
Poitou, C.11
-
3
-
-
79957920754
-
Inflammatory links between obesity and metabolic disease
-
Lumeng, C. N., and A. R. Saltiel. 2011. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121:2111-2117.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 2111-2117
-
-
Lumeng, C.N.1
Saltiel, A.R.2
-
4
-
-
77949874469
-
Obesity, inflammation, and cardiovascular risk
-
Mathieu, P., I. Lemieux, and J.-P. Després. 2010. Obesity, inflammation, and cardiovascular risk. Clin. Pharmacol. Ther. 87:407-416.
-
(2010)
Clin. Pharmacol. Ther.
, vol.87
, pp. 407-416
-
-
Mathieu, P.1
Lemieux, I.2
Després, J.-P.3
-
5
-
-
4644338458
-
Circulating mononuclear cells in the obese are in a proinflammatory state
-
Ghanim, H., A. Aljada, D. Hofmeyer, T. Syed, P. Mohanty, and P. Dandona. 2004. Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation 110:1564-1571.
-
(2004)
Circulation
, vol.110
, pp. 1564-1571
-
-
Ghanim, H.1
Aljada, A.2
Hofmeyer, D.3
Syed, T.4
Mohanty, P.5
Dandona, P.6
-
6
-
-
70350168294
-
Cytokine biomarkers, endothelial inflammation, and atherosclerosis in the metabolic syndrome: Emerging concepts
-
Rizvi, A. A. 2009. Cytokine biomarkers, endothelial inflammation, and atherosclerosis in the metabolic syndrome: emerging concepts. Am. J. Med. Sci. 338:310-318.
-
(2009)
Am. J. Med. Sci.
, vol.338
, pp. 310-318
-
-
Rizvi, A.A.1
-
7
-
-
79959783758
-
Defining macrophage phenotype and function in adipose tissue
-
Dalmas, E., K. Clément, and M. Guerre-Millo. 2011. Defining macrophage phenotype and function in adipose tissue. Trends Immunol. 32:307-314.
-
(2011)
Trends Immunol.
, vol.32
, pp. 307-314
-
-
Dalmas, E.1
Clément, K.2
Guerre-Millo, M.3
-
8
-
-
0033848101
-
Definition of human blood monocytes
-
Ziegler-Heitbrock, H. W. 2000. Definition of human blood monocytes. J. Leukoc. Biol. 67:603-606.
-
(2000)
J. Leukoc. Biol.
, vol.67
, pp. 603-606
-
-
Ziegler-Heitbrock, H.W.1
-
9
-
-
63449110370
-
CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation
-
Auffray, C., D. K. Fogg, E. Narni-Mancinelli, B. Senechal, C. Trouillet, N. Saederup, J. Leemput, K. Bigot, L. Campisi, M. Abitbol, et al. 2009. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med. 206:595-606.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 595-606
-
-
Auffray, C.1
Fogg, D.K.2
Narni-Mancinelli, E.3
Senechal, B.4
Trouillet, C.5
Saederup, N.6
Leemput, J.7
Bigot, K.8
Campisi, L.9
Abitbol, M.10
-
10
-
-
76249095169
-
Development of monocytes, macrophages, and dendritic cells
-
Geissmann, F., M. G. Manz, S. Jung, M. H. Sieweke, M. Merad, and K. Ley. 2010. Development of monocytes, macrophages, and dendritic cells. Science 327:656-661.
-
(2010)
Science
, vol.327
, pp. 656-661
-
-
Geissmann, F.1
Manz, M.G.2
Jung, S.3
Sieweke, M.H.4
Merad, M.5
Ley, K.6
-
11
-
-
77958185103
-
Nomenclature of monocytes and dendritic cells in blood
-
Ziegler-Heitbrock, L., P. Ancuta, S. Crowe, M. Dalod, V. Grau, D. N. Hart, P. J. M. Leenen, Y.-J. Liu, G. MacPherson, G. J. Randolph, et al. 2010. Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74-e80.
-
(2010)
Blood
, vol.116
, pp. e74-e80
-
-
Ziegler-Heitbrock, L.1
Ancuta, P.2
Crowe, S.3
Dalod, M.4
Grau, V.5
Hart, D.N.6
Leenen, P.J.M.7
Liu, Y.-J.8
MacPherson, G.9
Randolph, G.J.10
-
12
-
-
80052962325
-
CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: Relationships with fat mass and subclinical atherosclerosis
-
Poitou, C., E. Dalmas, M. Renovato, V. Benhamo, F. Hajduch, M. Abdennour, J.-F. Kahn, N. Veyrie, S. Rizkalla, W.-H. Fridman, et al. 2011. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31:2322-2330.
-
(2011)
Arterioscler. Thromb. Vasc. Biol.
, vol.31
, pp. 2322-2330
-
-
Poitou, C.1
Dalmas, E.2
Renovato, M.3
Benhamo, V.4
Hajduch, F.5
Abdennour, M.6
Kahn, J.-F.7
Veyrie, N.8
Rizkalla, S.9
Fridman, W.-H.10
-
13
-
-
33847789122
-
The CD14+ CD16+ blood monocytes: Their role in infection and inflammation
-
Ziegler-Heitbrock, L. 2007. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol. 81:584-592.
-
(2007)
J. Leukoc. Biol.
, vol.81
, pp. 584-592
-
-
Ziegler-Heitbrock, L.1
-
14
-
-
68549135403
-
Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods
-
Zhao, C., H. Zhang, W.-C. Wong, X. Sem, H. Han, S.-M. Ong, Y.-C. Tan, W.-H. Yeap, C.-S. Gan, K.-Q. Ng, et al. 2009. Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods. J. Proteome Res. 8:4028-4038.
-
(2009)
J. Proteome Res.
, vol.8
, pp. 4028-4038
-
-
Zhao, C.1
Zhang, H.2
Wong, W.-C.3
Sem, X.4
Han, H.5
Ong, S.-M.6
Tan, Y.-C.7
Yeap, W.-H.8
Gan, C.-S.9
Ng, K.-Q.10
-
15
-
-
77957020717
-
Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
-
Cros, J., N. Cagnard, K. Woollard, N. Patey, S.-Y. Zhang, B. Senechal, A. Puel, S. K. Biswas, D. Moshous, C. Picard, et al. 2010. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:375-386.
-
(2010)
Immunity
, vol.33
, pp. 375-386
-
-
Cros, J.1
Cagnard, N.2
Woollard, K.3
Patey, N.4
Zhang, S.-Y.5
Senechal, B.6
Puel, A.7
Biswas, S.K.8
Moshous, D.9
Picard, C.10
-
16
-
-
80051567423
-
Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets
-
Wong, K. L., J. J.-Y. Tai, W.-C. Wong, H. Han, X. Sem, W.-H. Yeap, P. Kourilsky, and S.-C. Wong. 2011. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118:e16-e31.
-
(2011)
Blood
, vol.118
, pp. e16-e31
-
-
Wong, K.L.1
Tai, J.J.-Y.2
Wong, W.-C.3
Han, H.4
Sem, X.5
Yeap, W.-H.6
Kourilsky, P.7
Wong, S.-C.8
-
17
-
-
80053181958
-
SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset
-
Zawada, A. M., K. S. Rogacev, B. Rotter, P. Winter, R.-R. Marell, D. Fliser, and G. H. Heine. 2011. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 118:e50-e61.
-
(2011)
Blood
, vol.118
, pp. e50-e61
-
-
Zawada, A.M.1
Rogacev, K.S.2
Rotter, B.3
Winter, P.4
Marell, R.-R.5
Fliser, D.6
Heine, G.H.7
-
18
-
-
0142039228
-
Simple and cost-effective isolation of monocytes from buffy coats
-
Repnik, U., M. Knezevic, and M. Jeras. 2003. Simple and cost-effective isolation of monocytes from buffy coats. J. Immunol. Methods 278:283-292.
-
(2003)
J. Immunol. Methods
, vol.278
, pp. 283-292
-
-
Repnik, U.1
Knezevic, M.2
Jeras, M.3
-
19
-
-
84904045292
-
Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity
-
Krinninger, P., R. Ensenauer, K. Ehlers, K. Rauh, J. Stoll, S. Krauss-Etschmann, H. Hauner, and H. Laumen. 2014. Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity. J. Clin. Endocrinol. Metab. 99:2500-2509.
-
(2014)
J. Clin. Endocrinol. Metab.
, vol.99
, pp. 2500-2509
-
-
Krinninger, P.1
Ensenauer, R.2
Ehlers, K.3
Rauh, K.4
Stoll, J.5
Krauss-Etschmann, S.6
Hauner, H.7
Laumen, H.8
-
20
-
-
79959445914
-
Fractalkine is a novel human adipochemokine associated with type 2 diabetes
-
Shah, R., C. C. Hinkle, J. F. Ferguson, N. N. Mehta, M. Li, L. Qu, Y. Lu, M. E. Putt, R. S. Ahima, and M. P. Reilly. 2011. Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes 60:1512-1518.
-
(2011)
Diabetes
, vol.60
, pp. 1512-1518
-
-
Shah, R.1
Hinkle, C.C.2
Ferguson, J.F.3
Mehta, N.N.4
Li, M.5
Qu, L.6
Lu, Y.7
Putt, M.E.8
Ahima, R.S.9
Reilly, M.P.10
-
21
-
-
84898548414
-
The fractalkine/Cx3CR1 system is implicated in the development of metabolic visceral adipose tissue inflammation in obesity
-
Polyák, A., S. Ferenczi, A. Dénes, Z. Winkler, R. Kriszt, B. Pintér-Kübler, and K. J. Kovács. 2014. The fractalkine/Cx3CR1 system is implicated in the development of metabolic visceral adipose tissue inflammation in obesity. Brain Behav. Immun. 38:25-35.
-
(2014)
Brain Behav. Immun.
, vol.38
, pp. 25-35
-
-
Polyák, A.1
Ferenczi, S.2
Dénes, A.3
Winkler, Z.4
Kriszt, R.5
Pintér-Kübler, B.6
Kovács, K.J.7
-
22
-
-
0037465557
-
Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice
-
Combadière, C., S. Potteaux, J.-L. Gao, B. Esposito, S. Casanova, E. J. Lee, P. Debré, A. Tedgui, P. M. Murphy, and Z. Mallat. 2003. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107:1009-1016.
-
(2003)
Circulation
, vol.107
, pp. 1009-1016
-
-
Combadière, C.1
Potteaux, S.2
Gao, J.-L.3
Esposito, B.4
Casanova, S.5
Lee, E.J.6
Debré, P.7
Tedgui, A.8
Murphy, P.M.9
Mallat, Z.10
-
23
-
-
85047687223
-
Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis
-
Lesnik, P., C. A. Haskell, and I. F. Charo. 2003. Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis. J. Clin. Invest. 111:333-340.
-
(2003)
J. Clin. Invest.
, vol.111
, pp. 333-340
-
-
Lesnik, P.1
Haskell, C.A.2
Charo, I.F.3
-
24
-
-
33644808386
-
Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy
-
Damås, J. K., A. Boullier, T. Waehre, C. Smith, W. J. Sandberg, S. Green, P. Aukrust, and O. Quehenberger. 2005. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy. Arterioscler. Thromb. Vasc. Biol. 25:2567-2572.
-
(2005)
Arterioscler. Thromb. Vasc. Biol.
, vol.25
, pp. 2567-2572
-
-
Damås, J.K.1
Boullier, A.2
Waehre, T.3
Smith, C.4
Sandberg, W.J.5
Green, S.6
Aukrust, P.7
Quehenberger, O.8
-
25
-
-
37749054645
-
CX3CR1 receptor is up-regulated in monocytes of coronary artery diseased patients: Impact of pre-inflammatory stimuli and reninangiotensin system modulators
-
Apostolakis, S., E. Krambovitis, Z. Vlata, G. E. Kochiadakis, S. Baritaki, and D. A. Spandidos. 2007. CX3CR1 receptor is up-regulated in monocytes of coronary artery diseased patients: impact of pre-inflammatory stimuli and reninangiotensin system modulators. Thromb. Res. 121:387-395.
-
(2007)
Thromb. Res.
, vol.121
, pp. 387-395
-
-
Apostolakis, S.1
Krambovitis, E.2
Vlata, Z.3
Kochiadakis, G.E.4
Baritaki, S.5
Spandidos, D.A.6
-
26
-
-
75749111011
-
Upregulation of fractalkine and its receptor, CX3CR1, is associated with coronary plaque rupture in patients with unstable angina pectoris
-
Ikejima, H., T. Imanishi, H. Tsujioka, M. Kashiwagi, A. Kuroi, T. Tanimoto, H. Kitabata, K. Ishibashi, K. Komukai, T. Takeshita, and T. Akasaka. 2010. Upregulation of fractalkine and its receptor, CX3CR1, is associated with coronary plaque rupture in patients with unstable angina pectoris. Circ. J. 74:337-345.
-
(2010)
Circ. J.
, vol.74
, pp. 337-345
-
-
Ikejima, H.1
Imanishi, T.2
Tsujioka, H.3
Kashiwagi, M.4
Kuroi, A.5
Tanimoto, T.6
Kitabata, H.7
Ishibashi, K.8
Komukai, K.9
Takeshita, T.10
Akasaka, T.11
-
27
-
-
0032547581
-
Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow
-
Fong, A. M., L. A. Robinson, D. A. Steeber, T. F. Tedder, O. Yoshie, T. Imai, and D. D. Patel. 1998. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J. Exp. Med. 188:1413-1419.
-
(1998)
J. Exp. Med.
, vol.188
, pp. 1413-1419
-
-
Fong, A.M.1
Robinson, L.A.2
Steeber, D.A.3
Tedder, T.F.4
Yoshie, O.5
Imai, T.6
Patel, D.D.7
-
28
-
-
0344393600
-
Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1)
-
Lucas, A. D., C. Bursill, T. J. Guzik, J. Sadowski, K. M. Channon, and D. R. Greaves. 2003. Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1). Circulation 108:2498-2504.
-
(2003)
Circulation
, vol.108
, pp. 2498-2504
-
-
Lucas, A.D.1
Bursill, C.2
Guzik, T.J.3
Sadowski, J.4
Channon, K.M.5
Greaves, D.R.6
-
29
-
-
33845989083
-
Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
-
Tacke, F., D. Alvarez, T. J. Kaplan, C. Jakubzick, R. Spanbroek, J. Llodra, A. Garin, J. Liu, M. Mack, N. Van Rooijen, et al. 2007. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117:185-194.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 185-194
-
-
Tacke, F.1
Alvarez, D.2
Kaplan, T.J.3
Jakubzick, C.4
Spanbroek, R.5
Llodra, J.6
Garin, A.7
Liu, J.8
Mack, M.9
Van Rooijen, N.10
-
30
-
-
41649100060
-
Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C (hi) and Ly6C (lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice
-
Combadière, C., S. Potteaux, M. Rodero, T. Simon, A. Pezard, B. Esposito, R. Merval, A. Proudfoot, A. Tedgui, and Z. Mallat. 2008. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C (hi) and Ly6C (lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649-1657.
-
(2008)
Circulation
, vol.117
, pp. 1649-1657
-
-
Combadière, C.1
Potteaux, S.2
Rodero, M.3
Simon, T.4
Pezard, A.5
Esposito, B.6
Merval, R.7
Proudfoot, A.8
Tedgui, A.9
Mallat, Z.10
-
31
-
-
44849104301
-
A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice
-
Braunersreuther, V., S. Steffens, C. Arnaud, G. Pelli, F. Burger, A. Proudfoot, and F. Mach. 2008. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler. Thromb. Vasc. Biol. 28:1090-1096.
-
(2008)
Arterioscler. Thromb. Vasc. Biol.
, vol.28
, pp. 1090-1096
-
-
Braunersreuther, V.1
Steffens, S.2
Arnaud, C.3
Pelli, G.4
Burger, F.5
Proudfoot, A.6
Mach, F.7
-
32
-
-
79952385006
-
Chemokine receptor CCR5: From AIDS to atherosclerosis
-
Jones, K. L., J. J. Maguire, and A. P. Davenport. 2011. Chemokine receptor CCR5: from AIDS to atherosclerosis. Br. J. Pharmacol. 162:1453-1469.
-
(2011)
Br. J. Pharmacol.
, vol.162
, pp. 1453-1469
-
-
Jones, K.L.1
Maguire, J.J.2
Davenport, A.P.3
-
33
-
-
73849125378
-
CCL5 promotes macrophage recruitment and survival in human adipose tissue
-
Keophiphath, M., C. Rouault, A. Divoux, K. Clément, and D. Lacasa. 2010. CCL5 promotes macrophage recruitment and survival in human adipose tissue. Arterioscler. Thromb. Vasc. Biol. 30:39-45.
-
(2010)
Arterioscler. Thromb. Vasc. Biol.
, vol.30
, pp. 39-45
-
-
Keophiphath, M.1
Rouault, C.2
Divoux, A.3
Clément, K.4
Lacasa, D.5
-
34
-
-
77955981022
-
High-density lipoproteins suppress chemokines and chemokine receptors in vitro and in vivo
-
Bursill, C. A., M. L. Castro, D. T. Beattie, S. Nakhla, E. Van Der Vorst, A. K. Heather, P. J. Barter, and K.-A. Rye. 2010. High-density lipoproteins suppress chemokines and chemokine receptors in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 30:1773-1778.
-
(2010)
Arterioscler. Thromb. Vasc. Biol.
, vol.30
, pp. 1773-1778
-
-
Bursill, C.A.1
Castro, M.L.2
Beattie, D.T.3
Nakhla, S.4
Van Der Vorst, E.5
Heather, A.K.6
Barter, P.J.7
Rye, K.-A.8
-
35
-
-
44049092407
-
Discovery of a cytokine and its receptor by functional screening of the extracellular proteome
-
Lin, H., E. Lee, K. Hestir, C. Leo, M. Huang, E. Bosch, R. Halenbeck, G. Wu, A. Zhou, D. Behrens, et al. 2008. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807-811.
-
(2008)
Science
, vol.320
, pp. 807-811
-
-
Lin, H.1
Lee, E.2
Hestir, K.3
Leo, C.4
Huang, M.5
Bosch, E.6
Halenbeck, R.7
Wu, G.8
Zhou, A.9
Behrens, D.10
-
36
-
-
77957115690
-
Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells
-
Wei, S., S. Nandi, V. Chitu, Y.-G. Yeung, W. Yu, M. Huang, L. T. Williams, H. Lin, and E. R. Stanley. 2010. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J. Leukoc. Biol. 88:495-505.
-
(2010)
J. Leukoc. Biol.
, vol.88
, pp. 495-505
-
-
Wei, S.1
Nandi, S.2
Chitu, V.3
Yeung, Y.-G.4
Yu, W.5
Huang, M.6
Williams, L.T.7
Lin, H.8
Stanley, E.R.9
-
37
-
-
0032523207
-
Adipocyte macrophage colony-stimulating factor is a mediator of adipose tissue growth
-
Levine, J. A., M. D. Jensen, N. L. Eberhardt, and T. O'Brien. 1998. Adipocyte macrophage colony-stimulating factor is a mediator of adipose tissue growth. J. Clin. Invest. 101:1557-1564.
-
(1998)
J. Clin. Invest.
, vol.101
, pp. 1557-1564
-
-
Levine, J.A.1
Jensen, M.D.2
Eberhardt, N.L.3
O'Brien, T.4
-
38
-
-
34347249246
-
Macrophage infiltration into omental versus subcutaneous fat across different populations: Effect of regional adiposity and the comorbidities of obesity
-
Harman-Boehm, I., M. Blüher, H. Redel, N. Sion-Vardy, S. Ovadia, E. Avinoach, I. Shai, N. Klöting, M. Stumvoll, N. Bashan, and A. Rudich. 2007. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J. Clin. Endocrinol. Metab. 92:2240-2247.
-
(2007)
J. Clin. Endocrinol. Metab.
, vol.92
, pp. 2240-2247
-
-
Harman-Boehm, I.1
Blüher, M.2
Redel, H.3
Sion-Vardy, N.4
Ovadia, S.5
Avinoach, E.6
Shai, I.7
Klöting, N.8
Stumvoll, M.9
Bashan, N.10
Rudich, A.11
-
39
-
-
0035524488
-
Toll-like receptors and innate immunity
-
Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135-145.
-
(2001)
Nat. Rev. Immunol.
, vol.1
, pp. 135-145
-
-
Medzhitov, R.1
-
40
-
-
33750584214
-
TLR4 links innate immunity and fatty acid-induced insulin resistance
-
Shi, H., M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier. 2006. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116:3015-3025.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 3015-3025
-
-
Shi, H.1
Kokoeva, M.V.2
Inouye, K.3
Tzameli, I.4
Yin, H.5
Flier, J.S.6
-
41
-
-
79959267977
-
Toll-like receptors, inflammation, metabolism and obesity
-
Fresno, M., R. Alvarez, and N. Cuesta. 2011. Toll-like receptors, inflammation, metabolism and obesity. Arch. Physiol. Biochem. 117:151-164.
-
(2011)
Arch. Physiol. Biochem.
, vol.117
, pp. 151-164
-
-
Fresno, M.1
Alvarez, R.2
Cuesta, N.3
|