-
2
-
-
84880825881
-
Mathematics, intuition, formalization,: a study of students’ conceptions of 0.9999…. [Mathematik, Intuition, Formalisierung: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu 0,9999….]
-
Bauer, L. (2011). Mathematics, intuition, formalization,: a study of students’ conceptions of 0.9999…. [Mathematik, Intuition, Formalisierung: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu 0,9999….]. Journal für Mathematik-Didaktik, 32(1), 79–102.
-
(2011)
Journal für Mathematik-Didaktik
, vol.32
, Issue.1
, pp. 79-102
-
-
Bauer, L.1
-
3
-
-
84926392251
-
Ein Grundkurs in analysis
-
Blum, W. (1975). Ein Grundkurs in analysis. Didaktik der Mathematik,3, 163–184.
-
(1975)
Didaktik der Mathematik
, vol.3
, pp. 163-184
-
-
Blum, W.1
-
4
-
-
84926334443
-
The effect of computers on teaching the limit concept. International Journal for Mathematics Teaching and Learning, 03.05
-
Büyükköroglu, T., Düzce, S. A., Çetin, N., Mahir, N., Deniz, A., & Üreyen, M. (2006). The effect of computers on teaching the limit concept. International Journal for Mathematics Teaching and Learning, 03.05. Published online. http://www.cimt.plymouth.ac.uk/journal. Accessed 5 May 2014.
-
(2006)
Published online
-
-
Büyükköroglu, T.1
Düzce, S.A.2
Çetin, N.3
Mahir, N.4
Deniz, A.5
Üreyen, M.6
-
5
-
-
84893652577
-
New technologies and education: Constructive, geometric and dynamic introduction of the derivative concept
-
Caballero-Gonzalez, C., & Bernal-Rodriguez, J. (2011). New technologies and education: Constructive, geometric and dynamic introduction of the derivative concept. International Journal for Technology in Mathematics Education,18(4), 203–208.
-
(2011)
International Journal for Technology in Mathematics Education
, vol.18
, Issue.4
, pp. 203-208
-
-
Caballero-Gonzalez, C.1
Bernal-Rodriguez, J.2
-
7
-
-
84926333569
-
A comparative study of three different approaches to the limit concept. Dissertation
-
Churchman, F. L. (1972). A comparative study of three different approaches to the limit concept. Dissertation. University of Georgia.
-
(1972)
University of Georgia
-
-
Churchman, F.L.1
-
8
-
-
85011429387
-
Mathematical modelling: transitions between the real world and the mathematical model
-
Crouch, R., & Haines, C. (2004). Mathematical modelling: transitions between the real world and the mathematical model. International Journal of Education in Mathematics, Science and Technology,35(2), 197–206.
-
(2004)
International Journal of Education in Mathematics, Science and Technology
, vol.35
, Issue.2
, pp. 197-206
-
-
Crouch, R.1
Haines, C.2
-
9
-
-
77958526651
-
Emergent modelling: discrete graphs to support the understanding of change and velocity
-
Doorman, M., & Gravemeijer, K. (2009). Emergent modelling: discrete graphs to support the understanding of change and velocity. ZDM—The International Journal on MathematicsEducation, 41, 199–211.
-
(2009)
ZDM—The International Journal on Mathematics Education
, vol.41
, pp. 199-211
-
-
Doorman, M.1
Gravemeijer, K.2
-
10
-
-
77957891158
-
From artefacts to instruments: a theoretical framework behind the orchestra metaphor
-
Blume GW, Heid MK, (eds), Cases and perspectives, 2, Information Age, Charlotte, NC:
-
Drijvers, P., & Trouche, L. (2008). From artefacts to instruments: a theoretical framework behind the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics (Vol. 2, pp. 363–392)., Cases and perspectives Charlotte, NC: Information Age.
-
(2008)
Research on technology and the teaching and learning of mathematics
, pp. 363-392
-
-
Drijvers, P.1
Trouche, L.2
-
14
-
-
3843074629
-
Context problems in realistic mathematics education: A calculus course as an example
-
Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics,39, 111–129.
-
(1999)
Educational Studies in Mathematics
, vol.39
, pp. 111-129
-
-
Gravemeijer, K.1
Doorman, M.2
-
15
-
-
21344483370
-
Duality, ambiguity, and flexibility: A “proceptual” view of simple arithmetic
-
Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: A “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education,25(2), 116–140.
-
(1994)
Journal for Research in Mathematics Education
, vol.25
, Issue.2
, pp. 116-140
-
-
Gray, E.1
Tall, D.2
-
16
-
-
84867477231
-
Amount and change—a contribution to the didactic reconstruction of calculus [Bestand und Änderung—Ein Beitrag zur didaktischen Rekonstruktion der Analysis]
-
Hahn, S., & Prediger, S. (2008). Amount and change—a contribution to the didactic reconstruction of calculus [Bestand und Änderung—Ein Beitrag zur didaktischen Rekonstruktion der Analysis]. Journal für Mathematik-Didaktik,29(3/4), 163–198.
-
(2008)
Journal für Mathematik-Didaktik
, vol.29
, Issue.3-4
, pp. 163-198
-
-
Hahn, S.1
Prediger, S.2
-
17
-
-
84926369370
-
Developing an intuitive concept of limit when approaching the derivative function
-
Antalya, Turkey:
-
Henning, A., & Hoffkamp, A. (2013). Developing an intuitive concept of limit when approaching the derivative function. Proceedings of CERME 8. Antalya, Turkey.
-
(2013)
Proceedings of CERME 8
-
-
Henning, A.1
Hoffkamp, A.2
-
18
-
-
53849113406
-
The role of animation in teaching the limit concept
-
Kidron, I., & Zehavi, N. (2002). The role of animation in teaching the limit concept. International Journal of Computer Algebra in Mathematics Education,9(3), 205–227.
-
(2002)
International Journal of Computer Algebra in Mathematics Education
, vol.9
, Issue.3
, pp. 205-227
-
-
Kidron, I.1
Zehavi, N.2
-
21
-
-
21244435702
-
Letting the intuitive bear on the formal: A didactical approach for the understanding of the limit of a sequence
-
Mamona-Downs, J. (2001). Letting the intuitive bear on the formal: A didactical approach for the understanding of the limit of a sequence. Educational Studies in Mathematics,48(2–3), 259–288.
-
(2001)
Educational Studies in Mathematics
, vol.48
, Issue.2-3
, pp. 259-288
-
-
Mamona-Downs, J.1
-
22
-
-
84858243286
-
Dynamic and interactive mathematics learning environments: The case of teaching the limit concept
-
Martinovic, D., & Karadag, Z. (2012). Dynamic and interactive mathematics learning environments: The case of teaching the limit concept. Teaching Mathematics and its Applications: An International Journal of the IMA,31(1), 41–48.
-
(2012)
Teaching Mathematics and its Applications: An International Journal of the IMA
, vol.31
, Issue.1
, pp. 41-48
-
-
Martinovic, D.1
Karadag, Z.2
-
23
-
-
0003865799
-
-
National Council of Teachers of Mathematics, Reston, VA:
-
NCTM. (1989). Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.
-
(1989)
Standards for School Mathematics
-
-
NCTM1
-
25
-
-
80053633495
-
Organizing research and development at the intersection of learning, implementation, and design
-
Penuel, W. R., Fishman, B. J., Cheng, B., & Sabellin, N. (2011). Organizing research and development at the intersection of learning, implementation, and design. Educational Researcher,40(7), 331–337.
-
(2011)
Educational Researcher
, vol.40
, Issue.7
, pp. 331-337
-
-
Penuel, W.R.1
Fishman, B.J.2
Cheng, B.3
Sabellin, N.4
-
26
-
-
84983946018
-
Accommodation of a scientific conception: Toward a theory of conceptual change
-
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education,66(2), 211–227.
-
(1982)
Science Education
, vol.66
, Issue.2
, pp. 211-227
-
-
Posner, G.J.1
Strike, K.A.2
Hewson, P.W.3
Gertzog, W.A.4
-
27
-
-
85002089268
-
The impact of the graphical approach on students’ understanding of the formal definition of limit
-
Quesada, A., Einsporn, R. L., & Wiggins, M. (2008). The impact of the graphical approach on students’ understanding of the formal definition of limit. International Journal for Technology in Mathematics Education,15(3), 95–102.
-
(2008)
International Journal for Technology in Mathematics Education
, vol.15
, Issue.3
, pp. 95-102
-
-
Quesada, A.1
Einsporn, R.L.2
Wiggins, M.3
-
29
-
-
3543005636
-
L’acquisition du concept de convergence des suites numéri-ques dans l’enseignement supérieur
-
Robert, A. (1981). L’acquisition du concept de convergence des suites numéri-ques dans l’enseignement supérieur. Bull. Assoc. Prof. Math. Enseign. Public (pp. 649–674).
-
(1981)
Bull. Assoc. Prof. Math. Enseign. Public
, pp. 649-674
-
-
Robert, A.1
-
30
-
-
53849115008
-
Students’ images and their understanding of definitions of the limit of a sequence
-
Roh, K. H. (2008). Students’ images and their understanding of definitions of the limit of a sequence. Educational Studies in Mathematics,69(3), 217–233.
-
(2008)
Educational Studies in Mathematics
, vol.69
, Issue.3
, pp. 217-233
-
-
Roh, K.H.1
-
31
-
-
84926390113
-
-
Chichester: Horwood
-
Roorda, G., Vos, P., & Goedhart, M. (2007). The concept of the derivative in modelling and applications. In Chr. Haines et al. (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics. Proceedings of the 12th international conference on the teaching of mathematical modelling and applications, London, UK, July 10–14, 2005. Chichester: Horwood.
-
(2007)
The concept of the derivative in modelling and applications. In Chr. Haines et al. (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics. Proceedings of the 12th international conference on the teaching of mathematical modelling and applications, London, UK, July 10–14, 2005
-
-
Roorda, G.1
Vos, P.2
Goedhart, M.3
-
32
-
-
84867554626
-
A fundamental course in higher mathematics incorporating discrete and continuous themes
-
Churchhouse RF, (ed), Cambridge University Press, Cambridge:
-
Seidman, S. B., & Rice, M. D. (1986). A fundamental course in higher mathematics incorporating discrete and continuous themes. In R. F. Churchhouse (Ed.), The influence of computers and informatics on mathematics and its teaching (pp. 95–106). Cambridge: Cambridge University Press.
-
(1986)
The influence of computers and informatics on mathematics and its teaching
, pp. 95-106
-
-
Seidman, S.B.1
Rice, M.D.2
-
33
-
-
0000935350
-
Humanities students and epistemological obstacles related to limits
-
Sierpinska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics,18, 371–397.
-
(1987)
Educational Studies in Mathematics
, vol.18
, pp. 371-397
-
-
Sierpinska, A.1
-
34
-
-
79954701321
-
Reinventing the formal definition of limit: The case of Amy and Mike
-
Swinyard, C. (2011). Reinventing the formal definition of limit: The case of Amy and Mike. Journal of Mathematical Behavior,30(2), 93–114.
-
(2011)
Journal of Mathematical Behavior
, vol.30
, Issue.2
, pp. 93-114
-
-
Swinyard, C.1
-
35
-
-
84864250724
-
Coming to understand the formal definition of limit: Insights gained from engaging students in reinvention
-
Swinyard, C., & Larsen, S. (2012). Coming to understand the formal definition of limit: Insights gained from engaging students in reinvention. Journal for Research in Mathematics Education,43(4), 465–493.
-
(2012)
Journal for Research in Mathematics Education
, vol.43
, Issue.4
, pp. 465-493
-
-
Swinyard, C.1
Larsen, S.2
-
36
-
-
27944447225
-
Conflicts and catastrophes in the learning of mathematics
-
Tall, D. (1977). Conflicts and catastrophes in the learning of mathematics. Mathematical Education for Teaching,2(4), 3–18.
-
(1977)
Mathematical Education for Teaching
, vol.2
, Issue.4
, pp. 3-18
-
-
Tall, D.1
-
37
-
-
0002038327
-
The transition to advanced mathematical thinking: functions, limits, infinity, and proof
-
Grouws DA, (ed), Macmillan, New York:
-
Tall, D. (1992). The transition to advanced mathematical thinking: functions, limits, infinity, and proof. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495–511). New York: Macmillan.
-
(1992)
Handbook of research on mathematics teaching and learning
, pp. 495-511
-
-
Tall, D.1
-
38
-
-
84926301858
-
Students’ difficulties in calculus. Proceedings of Working Group 3 on Students’ Difficulties in Calculus, ICME-7 1992 (pp
-
Québec, Canada:
-
Tall, D. (1993). Students’ difficulties in calculus. Proceedings of Working Group 3 on Students’ Difficulties in Calculus, ICME-7 1992 (pp. 13–28). Québec, Canada.
-
(1993)
13–28)
-
-
Tall, D.1
-
40
-
-
0000213855
-
Concept image and concept definition in mathematics with particular reference to limits and continuity
-
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics,12, 151–169.
-
(1981)
Educational Studies in Mathematics
, vol.12
, pp. 151-169
-
-
Tall, D.1
Vinner, S.2
-
41
-
-
84926312153
-
-
Hildesheim, Franzbecker:
-
Thies, S., & Weigand, H.-G. (2003). Working styles of students in a computer-based environment—results of a DFG project. In G. Törner et al. (Eds.), Selected papers from the Annual Conferences on Didactics of Mathematics, Ludwigsburg 2001. Hildesheim: Franzbecker. http://webdoc.sub.gwdg.de/ebook/e/gdm/2001/index.html. Accessed 5 May 2014.
-
(2003)
Working styles of students in a computer-based environment—results of a DFG project. In G. Törner et al. (Eds.), Selected papers from the Annual Conferences on Didactics of Mathematics, Ludwigsburg 2001
-
-
Thies, S.1
Weigand, H.-G.2
-
45
-
-
0039344573
-
Mathematics education as a “design science
-
Wittmann, E. Chr. (1995). Mathematics education as a “design science”. Educational Studies in Mathematics,29(4), 355–374.
-
(1995)
Educational Studies in Mathematics
, vol.29
, Issue.4
, pp. 355-374
-
-
Wittmann, E.C.1
|