메뉴 건너뛰기




Volumn 9, Issue 5, 2015, Pages 494-502

Prediction interval estimations for electricity demands and prices: A multi-objective approach

Author keywords

[No Author keywords available]

Indexed keywords

COMMERCE; COSTS; DEREGULATION; EVOLUTIONARY ALGORITHMS; OPTIMIZATION; PARETO PRINCIPLE;

EID: 84926338496     PISSN: 17518687     EISSN: None     Source Type: Journal    
DOI: 10.1049/iet-gtd.2014.0599     Document Type: Article
Times cited : (9)

References (30)
  • 1
    • 77954834717 scopus 로고    scopus 로고
    • 'Construction of optimal prediction intervals for load forecasting problems'
    • Khosravi, A., Nahavandi, S., Creighton, D.: 'Construction of optimal prediction intervals for load forecasting problems'. IEEE Trans. Power Syst., 2010, 25, pp. 1496-1503 (doi: 10.1109/TPWRS.2010.2042309).
    • (2010) IEEE Trans. Power Syst. , vol.25 , pp. 1496-1503
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 3
    • 0033351401 scopus 로고    scopus 로고
    • 'Confidence and prediction intervals for neural network ensembles'
    • Washington DC, July
    • Carney, J., Cunningham, P., Bhagwan, U.: 'Confidence and prediction intervals for neural network ensembles'. Proc. Int. Joint Conf. Neural Networks, Washington DC, July 1999, vol. 2, pp. 1215-1218.
    • (1999) Proc. Int. Joint Conf. Neural Networks , vol.2 , pp. 1215-1218
    • Carney, J.1    Cunningham, P.2    Bhagwan, U.3
  • 4
    • 84903939323 scopus 로고    scopus 로고
    • 'Interval forecasting of electricity demand: A novel bivariate EMD-based support vector regression modeling framework'
    • Xiong, T., Bao, Y., Hu, Z.: 'Interval forecasting of electricity demand: A novel bivariate EMD-based support vector regression modeling framework'. Int. J. Electr. Power Energy Syst., 2014, 63, pp. 353-362 (doi: 10.1016/j.ijepes.2014.06.010).
    • (2014) Int. J. Electr. Power Energy Syst. , vol.63 , pp. 353-362
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 6
    • 55349112144 scopus 로고    scopus 로고
    • Forecasting spot electricity prices: 'A comparison of parametric and semiparametric time series models'
    • Forecasting spot electricity prices: 'A comparison of parametric and semiparametric time series models'. Int. J. Forecast., 2008, 24, (4), pp. 744-763 (doi: 10.1016/j.ijforecast.2008.08.004).
    • (2008) Int. J. Forecast , vol.24 , Issue.4 , pp. 744-763
  • 7
    • 84880916459 scopus 로고    scopus 로고
    • 'A new recursive dynamic factor analysis for point and interval forecast of electricity price'
    • Wu, H., Chan, S., Tsui, K., Hou, Y.: 'A new recursive dynamic factor analysis for point and interval forecast of electricity price'. IEEE Trans. Power Syst., 2013, 28, pp. 2352-2365 (doi: 10.1109/TPWRS.2012.2232314).
    • (2013) IEEE Trans. Power Syst. , vol.28 , pp. 2352-2365
    • Wu, H.1    Chan, S.2    Tsui, K.3    Hou, Y.4
  • 8
    • 84879800748 scopus 로고    scopus 로고
    • 'Quantifying uncertainties of neural network-based electricity price forecasts'
    • Khosravi, A., Nahavandi, S., Creighton, D.: 'Quantifying uncertainties of neural network-based electricity price forecasts'. Appl. Energy, 2013, 112, pp. 120-129 (doi: 10.1016/j.apenergy.2013.05.075).
    • (2013) Appl. Energy , vol.112 , pp. 120-129
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 9
    • 80052409097 scopus 로고    scopus 로고
    • 'Comprehensive review of neural network-based prediction intervals and new advances'
    • Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.: 'Comprehensive review of neural network-based prediction intervals and new advances'. IEEE Trans. Neural Netw., 2011, 22, (9), pp. 1341-1356 (doi: 10.1109/TNN.2011.2162110).
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.9 , pp. 1341-1356
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.4
  • 10
    • 84893303261 scopus 로고    scopus 로고
    • 'Optimal prediction intervals of wind power generation'
    • Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P.: 'Optimal prediction intervals of wind power generation'. IEEE Trans. Power Syst., 2014, 29, pp. 1166-1174 (doi: 10.1109/TPWRS.2013.2288100).
    • (2014) IEEE Trans. Power Syst. , vol.29 , pp. 1166-1174
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Dong, Z.Y.4    Wong, K.P.5
  • 11
    • 4043137356 scopus 로고    scopus 로고
    • 'A tutorial on support vector regression'
    • Smola, A.J., Schölkopf, B.: 'A tutorial on support vector regression'. Stat. Comput., 2004, 14, pp. 199-222 (doi: 10.1023/B:STCO.0000035301.49549.88).
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 13
    • 0000852513 scopus 로고
    • 'Muiltiobjective optimisation using nondominated sorting in genetic algorithms'
    • Srinivas, N., Deb, K.: 'Muiltiobjective optimisation using nondominated sorting in genetic algorithms'. Evol. Comput., 1994, 2, pp. 221-248 (doi: 10.1162/evco.1994.2.3.221).
    • (1994) Evol. Comput. , vol.2 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 14
    • 0036530772 scopus 로고    scopus 로고
    • 'A fast and elitist multiobjective genetic algorithm: NSGA-II'
    • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: 'A fast and elitist multiobjective genetic algorithm: NSGA-II'. IEEE Trans. Evol. Comput., 2002, 6, pp. 182-197 (doi: 10.1109/4235.996017).
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 16
    • 0033318858 scopus 로고    scopus 로고
    • 'Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach'
    • Zitzler, E., Thiele, L.: 'Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach'. IEEE Trans. Evol. Comput., 1999, 3, pp. 257-271 (doi: 10.1109/4235.797969).
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2
  • 19
    • 0142000477 scopus 로고    scopus 로고
    • 'Differential evolution a simple and efficient heuristic for global optimisation over continuous spaces'
    • Storn, R., Price, K.: 'Differential evolution a simple and efficient heuristic for global optimisation over continuous spaces'. J. Glob. Optim., 1997, 11, (4), pp. 341-359 (doi: 10.1023/A:1008202821328).
    • (1997) J. Glob. Optim. , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 20
    • 84901400179 scopus 로고    scopus 로고
    • 'Pareto-based multi-objective differential evolution'
    • Xue, F., Sanderson, A., Graves, R.: 'Pareto-based multi-objective differential evolution'. Proc. Congr. Evol. Comput., 2003, 2, pp. 862-869.
    • (2003) Proc. Congr. Evol. Comput. , vol.2 , pp. 862-869
    • Xue, F.1    Sanderson, A.2    Graves, R.3
  • 21
    • 24344460395 scopus 로고    scopus 로고
    • 'Demo: differential evolution for multiobjective optimisation'
    • Berlin Heidelberg 2005 (LNCS, 3410)
    • Robic, T., Filipic, B.: 'Demo: differential evolution for multiobjective optimisation'. Evolutionary multi-criterion optimisation, Berlin Heidelberg 2005 (LNCS, 3410), pp. 520-533.
    • Evolutionary multi-criterion optimisation , pp. 520-533
    • Robic, T.1    Filipic, B.2
  • 22
    • 0344395549 scopus 로고    scopus 로고
    • 'Environmental/economic power dispatch using multiobjective evolutionary algorithms'
    • Abido, M.: 'Environmental/economic power dispatch using multiobjective evolutionary algorithms'. IEEE Trans. Power Syst., 2003, 18, pp. 1529-1537 (doi: 10.1109/TPWRS.2003.818693).
    • (2003) IEEE Trans. Power Syst. , vol.18 , pp. 1529-1537
    • Abido, M.1
  • 23
    • 84903128295 scopus 로고
    • 'A decision-theoretic approach to interval estimation'
    • Winkler, R.L.: 'A decision-theoretic approach to interval estimation'. J. Am. Stat. Assoc., 1972, 67, (337), pp. 187-191 (doi: 10.1080/01621459.1972.10481224).
    • (1972) J. Am. Stat. Assoc. , vol.67 , Issue.337 , pp. 187-191
    • Winkler, R.L.1
  • 24
    • 79952186591 scopus 로고    scopus 로고
    • 'Lower upper bound estimation method for construction of neural network-based prediction intervals'
    • Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.: 'Lower upper bound estimation method for construction of neural network-based prediction intervals'. IEEE Trans. Neural Netw., 2011, 22, (3), pp. 337-346 (doi: 10.1109/TNN.2010.2096824).
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.3 , pp. 337-346
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.4
  • 25
    • 27144489164 scopus 로고    scopus 로고
    • 'A tutorial on support vector machines for pattern recognition'
    • Burges, C.J.C.: 'A tutorial on support vector machines for pattern recognition'. Data. Min. Knowl. Discov., 1998, 2, pp. 121-167 (doi: 10.1023/A:1009715923555).
    • (1998) Data. Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 27
    • 33748076461 scopus 로고    scopus 로고
    • 'A GA-based feature selection and parameters optimisation for support vector machines'
    • Huang, C.-L., Wang, C.-J.: 'A GA-based feature selection and parameters optimisation for support vector machines'. Expert Syst. Appl., 2006, 31, (2), pp. 231-240 (doi: 10.1016/j.eswa.2005.09.024).
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 28
    • 69249202329 scopus 로고    scopus 로고
    • 'Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions'
    • Ortiz-Garcia, E.G, Salcedo-Sanz, S., Pérez-Bellido, A.M, Portilla-Figueras, J.A.'Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions'. Neurocomputing, 2009, 72, (16-18), pp. 3683-3691 (doi: 10.1016/j.neucom.2009.07.009).
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3683-3691
    • Ortiz-Garcia, E.G.1    Salcedo-Sanz, S.2    Pérez-Bellido, A.M.3    Portilla-Figueras, J.A.4
  • 30
    • 77956649096 scopus 로고    scopus 로고
    • 'A survey of cross-validation procedures for model selection'
    • Arlot, S., Celisse, A.: 'A survey of cross-validation procedures for model selection'. Stat. Surv., 2010, 4, pp. 40-79 (doi: 10.1214/09-SS054).
    • (2010) Stat. Surv. , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.