-
1
-
-
0032820595
-
The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research
-
Ferguson MA, (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112 (Pt 17): 2799–2809. 10444375
-
(1999)
J Cell Sci
, vol.112
, pp. 2799-2809
-
-
Ferguson, M.A.1
-
2
-
-
40749160804
-
Lipid remodeling of GPI-anchored proteins and its function
-
Fujita M, Jigami Y, (2008) Lipid remodeling of GPI-anchored proteins and its function. Biochim Biophys Acta 1780: 410–420. 17913366
-
(2008)
Biochim Biophys Acta
, vol.1780
, pp. 410-420
-
-
Fujita, M.1
Jigami, Y.2
-
3
-
-
46849102138
-
The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins
-
Paulick MG, Bertozzi CR, (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47: 6991–7000. doi: 10.1021/bi8006324 18557633
-
(2008)
Biochemistry
, vol.47
, pp. 6991-7000
-
-
Paulick, M.G.1
Bertozzi, C.R.2
-
4
-
-
79961141890
-
Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins
-
Maeda Y, Kinoshita T, (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 50: 411–424. doi: 10.1016/j.plipres.2011.05.002 21658410
-
(2011)
Prog Lipid Res
, vol.50
, pp. 411-424
-
-
Maeda, Y.1
Kinoshita, T.2
-
5
-
-
0026512314
-
Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
-
Brown DA, Rose JK, (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544. 1531449
-
(1992)
Cell
, vol.68
, pp. 533-544
-
-
Brown, D.A.1
Rose, J.K.2
-
6
-
-
33645277808
-
GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells
-
Paladino S, Pocard T, Catino MA, Zurzolo C, (2006) GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. J Cell Biol 172: 1023–1034. 16549497
-
(2006)
J Cell Biol
, vol.172
, pp. 1023-1034
-
-
Paladino, S.1
Pocard, T.2
Catino, M.A.3
Zurzolo, C.4
-
7
-
-
78650307465
-
An analysis of the Caenorhabditis elegans lipid raft proteome using geLC-MS/MS
-
Rao W, Isaac RE, Keen JN, (2011) An analysis of the Caenorhabditis elegans lipid raft proteome using geLC-MS/MS. J Proteomics 74: 242–253. doi: 10.1016/j.jprot.2010.11.001 21070894
-
(2011)
J Proteomics
, vol.74
, pp. 242-253
-
-
Rao, W.1
Isaac, R.E.2
Keen, J.N.3
-
8
-
-
0032830246
-
Tissue-inherent fate of GPI revealed by GPI-anchored GFP transgenesis
-
Kondoh G, Gao XH, Nakano Y, Koike H, Yamada S, et al. (1999) Tissue-inherent fate of GPI revealed by GPI-anchored GFP transgenesis. FEBS Lett 458: 299–303. 10570928
-
(1999)
FEBS Lett
, vol.458
, pp. 299-303
-
-
Kondoh, G.1
Gao, X.H.2
Nakano, Y.3
Koike, H.4
Yamada, S.5
-
9
-
-
0028361106
-
A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis
-
Leidich SD, Drapp DA, Orlean P, (1994) A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J Biol Chem 269: 10193–10196. 8144596
-
(1994)
J Biol Chem
, vol.269
, pp. 10193-10196
-
-
Leidich, S.D.1
Drapp, D.A.2
Orlean, P.3
-
10
-
-
84858433881
-
GPI-anchor synthesis is indispensable for the germline development of the nematode Caenorhabditis elegans
-
Murata D, Nomura KH, Dejima K, Mizuguchi S, Kawasaki N, et al. (2012) GPI-anchor synthesis is indispensable for the germline development of the nematode Caenorhabditis elegans. Mol Biol Cell 23: 982–995. doi: 10.1091/mbc.E10-10-0855 22298425
-
(2012)
Mol Biol Cell
, vol.23
, pp. 982-995
-
-
Murata, D.1
Nomura, K.H.2
Dejima, K.3
Mizuguchi, S.4
Kawasaki, N.5
-
11
-
-
0029824262
-
A knock-out model of paroxysmal nocturnal hemoglobinuria: Pig-a(-) hematopoiesis is reconstituted following intercellular transfer of GPI-anchored proteins
-
Dunn DE, Yu J, Nagarajan S, Devetten M, Weichold FF, et al. (1996) A knock-out model of paroxysmal nocturnal hemoglobinuria: Pig-a(-) hematopoiesis is reconstituted following intercellular transfer of GPI-anchored proteins. Proc Natl Acad Sci U S A 93: 7938–7943. 8755581
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, pp. 7938-7943
-
-
Dunn, D.E.1
Yu, J.2
Nagarajan, S.3
Devetten, M.4
Weichold, F.F.5
-
12
-
-
0033594885
-
X inactivation and somatic cell selection rescue female mice carrying a Piga-null mutation
-
Keller P, Tremml G, Rosti V, Bessler M, (1999) X inactivation and somatic cell selection rescue female mice carrying a Piga-null mutation. Proc Natl Acad Sci U S A 96: 7479–7483. 10377440
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 7479-7483
-
-
Keller, P.1
Tremml, G.2
Rosti, V.3
Bessler, M.4
-
13
-
-
57149125825
-
Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity
-
Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R, et al. (2008) Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135: 1085–1097. doi: 10.1016/j.cell.2008.11.032 19070578
-
(2008)
Cell
, vol.135
, pp. 1085-1097
-
-
Goswami, D.1
Gowrishankar, K.2
Bilgrami, S.3
Ghosh, S.4
Raghupathy, R.5
-
14
-
-
84861991991
-
Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules
-
Gowrishankar K, Ghosh S, Saha S, C R, Mayor S, et al. (2012) Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149: 1353–1367. doi: 10.1016/j.cell.2012.05.008 22682254
-
(2012)
Cell
, vol.149
, pp. 1353-1367
-
-
Gowrishankar, K.1
Ghosh, S.2
Saha, S.3
C, R.4
Mayor, S.5
-
15
-
-
0141652825
-
PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor
-
Murakami Y, Siripanyapinyo U, Hong Y, Kang JY, Ishihara S, et al. (2003) PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor. Mol Biol Cell 14: 4285–4295. 14517336
-
(2003)
Mol Biol Cell
, vol.14
, pp. 4285-4295
-
-
Murakami, Y.1
Siripanyapinyo, U.2
Hong, Y.3
Kang, J.Y.4
Ishihara, S.5
-
16
-
-
0037593245
-
GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast
-
Umemura M, Okamoto M, Nakayama K, Sagane K, Tsukahara K, et al. (2003) GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J Biol Chem 278: 23639–23647. 12714589
-
(2003)
J Biol Chem
, vol.278
, pp. 23639-23647
-
-
Umemura, M.1
Okamoto, M.2
Nakayama, K.3
Sagane, K.4
Tsukahara, K.5
-
17
-
-
15744375371
-
PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol
-
Kang JY, Hong Y, Ashida H, Shishioh N, Murakami Y, et al. (2005) PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem 280: 9489–9497. 15623507
-
(2005)
J Biol Chem
, vol.280
, pp. 9489-9497
-
-
Kang, J.Y.1
Hong, Y.2
Ashida, H.3
Shishioh, N.4
Murakami, Y.5
-
18
-
-
14644389477
-
Saccharomyces cerevisiae Ybr004c and its human homologue are required for addition of the second mannose during glycosylphosphatidylinositol precursor assembly
-
Fabre AL, Orlean P, Taron CH, (2005) Saccharomyces cerevisiae Ybr004c and its human homologue are required for addition of the second mannose during glycosylphosphatidylinositol precursor assembly. FEBS J 272: 1160–1168. 15720390
-
(2005)
FEBS J
, vol.272
, pp. 1160-1168
-
-
Fabre, A.L.1
Orlean, P.2
Taron, C.H.3
-
19
-
-
0035421238
-
PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8
-
Ohishi K, Inoue N, Kinoshita T, (2001) PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J 20: 4088–4098. 11483512
-
(2001)
EMBO J
, vol.20
, pp. 4088-4098
-
-
Ohishi, K.1
Inoue, N.2
Kinoshita, T.3
-
20
-
-
33644853935
-
PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins
-
Tashima Y, Taguchi R, Murata C, Ashida H, Kinoshita T, et al. (2006) PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell 17: 1410–1420. 16407401
-
(2006)
Mol Biol Cell
, vol.17
, pp. 1410-1420
-
-
Tashima, Y.1
Taguchi, R.2
Murata, C.3
Ashida, H.4
Kinoshita, T.5
-
21
-
-
84901050665
-
Delineation of PIGV mutation spectrum and associated phenotypes in hyperphosphatasia with mental retardation syndrome
-
Horn D, Wieczorek D, Metcalfe K, Baric I, Palezac L, et al. (2014) Delineation of PIGV mutation spectrum and associated phenotypes in hyperphosphatasia with mental retardation syndrome. Eur J Hum Genet 22: 762–767. doi: 10.1038/ejhg.2013.241 24129430
-
(2014)
Eur J Hum Genet
, vol.22
, pp. 762-767
-
-
Horn, D.1
Wieczorek, D.2
Metcalfe, K.3
Baric, I.4
Palezac, L.5
-
22
-
-
84883146458
-
A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT
-
Kvarnung M, Nilsson D, Lindstrand A, Korenke GC, Chiang SC, et al. (2013) A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT. J Med Genet 50: 521–528. doi: 10.1136/jmedgenet-2013-101654 23636107
-
(2013)
J Med Genet
, vol.50
, pp. 521-528
-
-
Kvarnung, M.1
Nilsson, D.2
Lindstrand, A.3
Korenke, G.C.4
Chiang, S.C.5
-
23
-
-
84875937347
-
PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome
-
Krawitz PM, Murakami Y, Riess A, Hietala M, Kruger U, et al. (2013) PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am J Hum Genet 92: 584–589. doi: 10.1016/j.ajhg.2013.03.011 23561847
-
(2013)
Am J Hum Genet
, vol.92
, pp. 584-589
-
-
Krawitz, P.M.1
Murakami, Y.2
Riess, A.3
Hietala, M.4
Kruger, U.5
-
24
-
-
84894426692
-
Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome
-
Chiyonobu T, Inoue N, Morimoto M, Kinoshita T, Murakami Y, (2014) Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J Med Genet 51: 203–207. doi: 10.1136/jmedgenet-2013-102156 24367057
-
(2014)
J Med Genet
, vol.51
, pp. 203-207
-
-
Chiyonobu, T.1
Inoue, N.2
Morimoto, M.3
Kinoshita, T.4
Murakami, Y.5
-
25
-
-
0028786075
-
Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans
-
Hekimi S, Boutis P, Lakowski B, (1995) Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans. Genetics 141: 1351–1364. 8601479
-
(1995)
Genetics
, vol.141
, pp. 1351-1364
-
-
Hekimi, S.1
Boutis, P.2
Lakowski, B.3
-
27
-
-
0031936213
-
Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin
-
Diep DB, Nelson KL, Raja SM, Pleshak EN, Buckley JT, (1998) Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J Biol Chem 273: 2355–2360. 9442081
-
(1998)
J Biol Chem
, vol.273
, pp. 2355-2360
-
-
Diep, D.B.1
Nelson, K.L.2
Raja, S.M.3
Pleshak, E.N.4
Buckley, J.T.5
-
28
-
-
34347385833
-
A role for Rab5 in structuring the endoplasmic reticulum
-
Audhya A, Desai A, Oegema K, (2007) A role for Rab5 in structuring the endoplasmic reticulum. J Cell Biol 178: 43–56. 17591921
-
(2007)
J Cell Biol
, vol.178
, pp. 43-56
-
-
Audhya, A.1
Desai, A.2
Oegema, K.3
-
29
-
-
34248227584
-
Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids
-
Orlean P, Menon AK, (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48: 993–1011. 17361015
-
(2007)
J Lipid Res
, vol.48
, pp. 993-1011
-
-
Orlean, P.1
Menon, A.K.2
-
30
-
-
0022778251
-
Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo
-
Priess JR, Hirsh DI, (1986) Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol 117: 156–173. 3743895
-
(1986)
Dev Biol
, vol.117
, pp. 156-173
-
-
Priess, J.R.1
Hirsh, D.I.2
-
31
-
-
0025824367
-
Vinculin is essential for muscle function in the nematode
-
Barstead RJ, Waterston RH, (1991) Vinculin is essential for muscle function in the nematode. J Cell Biol 114: 715–724. 1907975
-
(1991)
J Cell Biol
, vol.114
, pp. 715-724
-
-
Barstead, R.J.1
Waterston, R.H.2
-
32
-
-
0020790044
-
The influence of membrane skeleton on red cell deformability, membrane material properties, and shape
-
Mohandas N, Chasis JA, Shohet SB, (1983) The influence of membrane skeleton on red cell deformability, membrane material properties, and shape. Semin Hematol 20: 225–242. 6353591
-
(1983)
Semin Hematol
, vol.20
, pp. 225-242
-
-
Mohandas, N.1
Chasis, J.A.2
Shohet, S.B.3
-
33
-
-
84873398008
-
Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux
-
Khan LA, Zhang H, Abraham N, Sun L, Fleming JT, et al. (2013) Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat Cell Biol 15: 143–156. doi: 10.1038/ncb2656 23334498
-
(2013)
Nat Cell Biol
, vol.15
, pp. 143-156
-
-
Khan, L.A.1
Zhang, H.2
Abraham, N.3
Sun, L.4
Fleming, J.T.5
-
34
-
-
0027310539
-
Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria
-
Takeda J, Miyata T, Kawagoe K, Iida Y, Endo Y, et al. (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73: 703–711. 8500164
-
(1993)
Cell
, vol.73
, pp. 703-711
-
-
Takeda, J.1
Miyata, T.2
Kawagoe, K.3
Iida, Y.4
Endo, Y.5
-
35
-
-
41449118508
-
Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteins
-
Chen G, Ye Z, Yu X, Zou J, Mali P, et al. (2008) Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteins. Cell Stem Cell 2: 345–355. doi: 10.1016/j.stem.2008.02.004 18397754
-
(2008)
Cell Stem Cell
, vol.2
, pp. 345-355
-
-
Chen, G.1
Ye, Z.2
Yu, X.3
Zou, J.4
Mali, P.5
-
36
-
-
84927510322
-
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition
-
Klauzinska M, Castro NP, Rangel MC, Spike BT, Gray PC, et al. (2014) The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin Cancer Biol 29C: 51–58.
-
(2014)
Semin Cancer Biol
, vol.29C
, pp. 51-58
-
-
Klauzinska, M.1
Castro, N.P.2
Rangel, M.C.3
Spike, B.T.4
Gray, P.C.5
-
37
-
-
84926384935
-
Regulation of TGFbeta superfamily signaling by two separable domains of glypican LON-2 in C. elegans
-
Taneja-Bageshwar S, Gumienny TL, (2013) Regulation of TGFbeta superfamily signaling by two separable domains of glypican LON-2 in C. elegans. Worm 2: e23843. doi: 10.4161/worm.23843 24778932
-
(2013)
Worm
, vol.2
, pp. 23843
-
-
Taneja-Bageshwar, S.1
Gumienny, T.L.2
-
38
-
-
84904158822
-
Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans
-
Schultz RD, Bennett EE, Ellis EA, Gumienny TL, (2014) Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans. PLoS One 9: e101929. doi: 10.1371/journal.pone.0101929 25013968
-
(2014)
PLoS One
, vol.9
, pp. 101929
-
-
Schultz, R.D.1
Bennett, E.E.2
Ellis, E.A.3
Gumienny, T.L.4
-
39
-
-
77949826033
-
Organizing the cell cortex: the role of ERM proteins
-
Fehon RG, McClatchey AI, Bretscher A, (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11: 276–287. doi: 10.1038/nrm2866 20308985
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 276-287
-
-
Fehon, R.G.1
McClatchey, A.I.2
Bretscher, A.3
-
40
-
-
84905484133
-
ERM proteins at a glance
-
McClatchey AI, (2014) ERM proteins at a glance. J Cell Sci 127: 3199–3204. doi: 10.1242/jcs.098343 24951115
-
(2014)
J Cell Sci
, vol.127
, pp. 3199-3204
-
-
McClatchey, A.I.1
-
41
-
-
65449145640
-
IgCAMs redundantly control axon navigation in Caenorhabditis elegans
-
Schwarz V, Pan J, Voltmer-Irsch S, Hutter H, (2009) IgCAMs redundantly control axon navigation in Caenorhabditis elegans. Neural Dev 4: 13. doi: 10.1186/1749-8104-4-13 19341471
-
(2009)
Neural Dev
, vol.4
, pp. 13
-
-
Schwarz, V.1
Pan, J.2
Voltmer-Irsch, S.3
Hutter, H.4
-
42
-
-
84870067065
-
The contactin RIG-6 mediates neuronal and non-neuronal cell migration in Caenorhabditis elegans
-
Katidou M, Tavernarakis N, Karagogeos D, (2013) The contactin RIG-6 mediates neuronal and non-neuronal cell migration in Caenorhabditis elegans. Dev Biol 373: 184–195. doi: 10.1016/j.ydbio.2012.10.027 23123963
-
(2013)
Dev Biol
, vol.373
, pp. 184-195
-
-
Katidou, M.1
Tavernarakis, N.2
Karagogeos, D.3
-
43
-
-
0032849015
-
Genes required for axon pathfinding and extension in the C. elegans nerve ring
-
Zallen JA, Kirch SA, Bargmann CI, (1999) Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 126: 3679–3692. 10409513
-
(1999)
Development
, vol.126
, pp. 3679-3692
-
-
Zallen, J.A.1
Kirch, S.A.2
Bargmann, C.I.3
-
44
-
-
0043123048
-
Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1
-
Eisenhaber F, Eisenhaber B, Kubina W, Maurer-Stroh S, Neuberger G, et al. (2003) Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1. Nucleic Acids Res 31: 3631–3634. 12824382
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 3631-3634
-
-
Eisenhaber, F.1
Eisenhaber, B.2
Kubina, W.3
Maurer-Stroh, S.4
Neuberger, G.5
-
45
-
-
0016063911
-
The genetics of Caenorhabditis elegans
-
Brenner S, (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94. 4366476
-
(1974)
Genetics
, vol.77
, pp. 71-94
-
-
Brenner, S.1
-
46
-
-
0035735918
-
Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia
-
Koppen M, Simske JS, Sims PA, Firestein BL, Hall DH, et al. (2001) Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol 3: 983–991. 11715019
-
(2001)
Nat Cell Biol
, vol.3
, pp. 983-991
-
-
Koppen, M.1
Simske, J.S.2
Sims, P.A.3
Firestein, B.L.4
Hall, D.H.5
-
47
-
-
78349302731
-
The F-BAR domain of SRGP-1 facilitates cell-cell adhesion during C. elegans morphogenesis
-
Zaidel-Bar R, Joyce MJ, Lynch AM, Witte K, Audhya A, et al. (2010) The F-BAR domain of SRGP-1 facilitates cell-cell adhesion during C. elegans morphogenesis. J Cell Biol 191: 761–769. doi: 10.1083/jcb.201005082 21059849
-
(2010)
J Cell Biol
, vol.191
, pp. 761-769
-
-
Zaidel-Bar, R.1
Joyce, M.J.2
Lynch, A.M.3
Witte, K.4
Audhya, A.5
-
48
-
-
84878513137
-
The secretory pathway calcium ATPase PMR-1/SPCA1 has essential roles in cell migration during Caenorhabditis elegans embryonic development
-
Praitis V, Simske J, Kniss S, Mandt R, Imlay L, et al. (2013) The secretory pathway calcium ATPase PMR-1/SPCA1 has essential roles in cell migration during Caenorhabditis elegans embryonic development. PLoS Genet 9: e1003506. doi: 10.1371/journal.pgen.1003506 23696750
-
(2013)
PLoS Genet
, vol.9
, pp. 1003506
-
-
Praitis, V.1
Simske, J.2
Kniss, S.3
Mandt, R.4
Imlay, L.5
-
49
-
-
78650512821
-
Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans
-
Neukomm LJ, Frei AP, Cabello J, Kinchen JM, Zaidel-Bar R, et al. (2011) Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans. Nat Cell Biol 13: 79–86. doi: 10.1038/ncb2138 21170032
-
(2011)
Nat Cell Biol
, vol.13
, pp. 79-86
-
-
Neukomm, L.J.1
Frei, A.P.2
Cabello, J.3
Kinchen, J.M.4
Zaidel-Bar, R.5
-
50
-
-
70350022781
-
Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles
-
Gally C, Wissler F, Zahreddine H, Quintin S, Landmann F, et al. (2009) Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles. Development 136: 3109–3119. doi: 10.1242/dev.039412 19675126
-
(2009)
Development
, vol.136
, pp. 3109-3119
-
-
Gally, C.1
Wissler, F.2
Zahreddine, H.3
Quintin, S.4
Landmann, F.5
-
51
-
-
0029443103
-
DNA transformation
-
Mello C, Fire A, (1995) DNA transformation. Methods Cell Biol 48: 451–482. 8531738
-
(1995)
Methods Cell Biol
, vol.48
, pp. 451-482
-
-
Mello, C.1
Fire, A.2
-
52
-
-
68349104949
-
MAQGene: software to facilitate C. elegans mutant genome sequence analysis
-
Bigelow H, Doitsidou M, Sarin S, Hobert O, (2009) MAQGene: software to facilitate C. elegans mutant genome sequence analysis. Nat Methods 6: 549. doi: 10.1038/nmeth.f.260 19620971
-
(2009)
Nat Methods
, vol.6
, pp. 549
-
-
Bigelow, H.1
Doitsidou, M.2
Sarin, S.3
Hobert, O.4
-
53
-
-
0035229245
-
Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans
-
Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J, (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2: RESEARCH0002.
-
(2001)
Genome Biol
, vol.2
-
-
Kamath, R.S.1
Martinez-Campos, M.2
Zipperlen, P.3
Fraser, A.G.4
Ahringer, J.5
-
54
-
-
0342288145
-
Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis
-
Gonczy P, Schnabel H, Kaletta T, Amores AD, Hyman T, et al. (1999) Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. J Cell Biol 144: 927–946. 10085292
-
(1999)
J Cell Biol
, vol.144
, pp. 927-946
-
-
Gonczy, P.1
Schnabel, H.2
Kaletta, T.3
Amores, A.D.4
Hyman, T.5
|