메뉴 건너뛰기




Volumn 26, Issue 2, 2015, Pages 79-94

Current situation on the availability of nanostructure–biological activity data

Author keywords

in silico; nano (Q)SAR; nano SAR; nanomaterials; nanotoxicity

Indexed keywords

BIOACTIVITY; COMPUTATIONAL CHEMISTRY; MOLECULAR GRAPHICS; TOXICITY;

EID: 84926249662     PISSN: 1062936X     EISSN: 1029046X     Source Type: Journal    
DOI: 10.1080/1062936X.2014.993702     Document Type: Article
Times cited : (33)

References (43)
  • 3
    • 79953279243 scopus 로고    scopus 로고
    • QSAR modeling of nanomaterials
    • Nanobiotech
    • E. Burello and A.P. Worth, QSAR modeling of nanomaterials, Nanomed. Nanobiotech. 3 (2011), pp. 298–306.
    • (2011) Nanomed. , vol.3 , pp. 298-306
    • Burello, E.1    Worth, A.P.2
  • 5
    • 84885757504 scopus 로고    scopus 로고
    • Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential
    • D.A. Winkler, E. Mombelli, A. Pietroiusti, L. Tran, A. Worth, B. Fadeel, and M.J. McCall, Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential, Toxicology (2012), pp. 15–23.
    • (2012) Toxicology , pp. 15-23
    • Winkler, D.A.1    Mombelli, E.2    Pietroiusti, A.3    Tran, L.4    Worth, A.5    Fadeel, B.6    McCall, M.J.7
  • 7
    • 73349083717 scopus 로고    scopus 로고
    • Toward the development of “nano‐QSARs”: Advances and challenges
    • T. Puzyn, D. Leszczynska, and J. Leszczynski, Toward the development of “nano‐QSARs”: Advances and challenges, Small 5 (2009), pp. 2494–2509.10.1002/smll.v5:22
    • (2009) Small , vol.5 , pp. 2494-2509
    • Puzyn, T.1    Leszczynska, D.2    Leszczynski, J.3
  • 10
    • 79952333743 scopus 로고    scopus 로고
    • Exploring quantitative nanostructure–activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles
    • D. Fourches, D. Pu, and A. Tropsha, Exploring quantitative nanostructure–activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles, Comb. Chem. High Throughput Screen. 14 (2011), pp. 217–225.10.2174/138620711794728743
    • (2011) Comb. Chem. High Throughput Screen. , vol.14 , pp. 217-225
    • Fourches, D.1    Pu, D.2    Tropsha, A.3
  • 11
    • 33750286241 scopus 로고    scopus 로고
    • QSAR–how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets
    • P. Gedeck, B. Rohde, and C. Bartels, QSAR–how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets, J. Chem. Inf. Model. 46 (2006), pp. 1924–1936.10.1021/ci050413p
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1924-1936
    • Gedeck, P.1    Rohde, B.2    Bartels, C.3
  • 12
    • 77749283358 scopus 로고    scopus 로고
    • Computational methods to predict the reactivity of nanoparticles through structure–property relationships
    • A. Poater, A.G. Saliner, M. Solà, L. Cavallo, and A.P. Worth, Computational methods to predict the reactivity of nanoparticles through structure–property relationships, Exp. Opin. Drug Deliv. 7 (2010), pp. 295–305.10.1517/17425240903508756
    • (2010) Exp. Opin. Drug Deliv. , vol.7 , pp. 295-305
    • Poater, A.1    Saliner, A.G.2    Solà, M.3    Cavallo, L.4    Worth, A.P.5
  • 13
    • 79952396925 scopus 로고    scopus 로고
    • Computational nanotoxicology: Predicting toxicity of nanoparticles
    • E. Burello and A. Worth, Computational nanotoxicology: Predicting toxicity of nanoparticles, Nat. Nanotechnol. 6 (2011), pp. 138–139.10.1038/nnano.2011.27
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 138-139
    • Burello, E.1    Worth, A.2
  • 15
    • 77957370134 scopus 로고    scopus 로고
    • QSAR modeling of measured binding affinity for fullerene-based HIV-1 PR inhibitors by CORAL
    • A.P. Toropova, A.A. Toropov, E. Benfenati, D. Leszczynska, and J. Leszczynski, QSAR modeling of measured binding affinity for fullerene-based HIV-1 PR inhibitors by CORAL, J. Math. Chem. 48 (2010), pp. 959–987.10.1007/s10910-010-9719-x
    • (2010) J. Math. Chem. , vol.48 , pp. 959-987
    • Toropova, A.P.1    Toropov, A.A.2    Benfenati, E.3    Leszczynska, D.4    Leszczynski, J.5
  • 16
    • 78349253077 scopus 로고    scopus 로고
    • Comparative study of predictive computational models for nanoparticle-induced cytotoxicity
    • C. Sayes and I. Ivanov, Comparative study of predictive computational models for nanoparticle-induced cytotoxicity, Risk Anal. 30 (2010), pp. 1723–1734.10.1111/j.1539-6924.2010.01438.x
    • (2010) Risk Anal. , vol.30 , pp. 1723-1734
    • Sayes, C.1    Ivanov, I.2
  • 19
    • 84865741803 scopus 로고    scopus 로고
    • Quantitative nanostructure–activity relationship modelling of nanoparticles
    • Y.T. Chau and C.W. Yap, Quantitative nanostructure–activity relationship modelling of nanoparticles, RSC Advances 2 (2012), pp. 8489–8496.10.1039/c2ra21489j
    • (2012) RSC Advances , vol.2 , pp. 8489-8496
    • Chau, Y.T.1    Yap, C.W.2
  • 20
    • 84862846212 scopus 로고    scopus 로고
    • Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation
    • H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, and Y.-P. Liao, Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation, ACS Nano 6 (2012), pp. 4349–4368.10.1021/nn3010087
    • (2012) ACS Nano , vol.6 , pp. 4349-4368
    • Zhang, H.1    Ji, Z.2    Xia, T.3    Meng, H.4    Low-Kam, C.5    Liu, R.6    Pokhrel, S.7    Lin, S.8    Wang, X.9    Liao, Y.-P.10
  • 22
    • 84865148453 scopus 로고    scopus 로고
    • Modeling the cellular uptake of magnetofluorescent nanoparticles in pancreatic cancer cells: A quantitative structure activity relationship study
    • M. Ghorbanzadeh, M.H. Fatemi, and M. Karimpour, Modeling the cellular uptake of magnetofluorescent nanoparticles in pancreatic cancer cells: A quantitative structure activity relationship study, Ind. Eng. Chem. Res. 51 (2012), pp. 10712–10718.10.1021/ie3006947
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 10712-10718
    • Ghorbanzadeh, M.1    Fatemi, M.H.2    Karimpour, M.3
  • 23
    • 84890322405 scopus 로고    scopus 로고
    • Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles
    • X.Z. Wang, Y. Yang, R.F. Li, C. McGuinnes, J. Adamson, I.L. Megson, and K. Donaldson, Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles, Nanotoxicology 8 (2014), pp. 465–476.10.3109/17435390.2013.796534
    • (2014) Nanotoxicology , vol.8 , pp. 465-476
    • Wang, X.Z.1    Yang, Y.2    Li, R.F.3    McGuinnes, C.4    Adamson, J.5    Megson, I.L.6    Donaldson, K.7
  • 24
    • 84878041827 scopus 로고    scopus 로고
    • Nano‐SAR development for bioactivity of nanoparticles with considerations of decision boundaries
    • R. Liu, R. Rallo, R. Weissleder, C. Tassa, S. Shaw, and Y. Cohen, Nano‐SAR development for bioactivity of nanoparticles with considerations of decision boundaries, Small (2013), pp. 1842–1852.10.1002/smll.201201903
    • (2013) Small , pp. 1842-1852
    • Liu, R.1    Rallo, R.2    Weissleder, R.3    Tassa, C.4    Shaw, S.5    Cohen, Y.6
  • 25
    • 84878702885 scopus 로고    scopus 로고
    • Development of structure–activity relationship for metal oxide nanoparticles
    • R. Liu, H.Y. Zhang, Z.X. Ji, R. Rallo, T. Xia, C.H. Chang, A. Nel, and Y. Cohen, Development of structure–activity relationship for metal oxide nanoparticles, Nanoscale (2013), pp. 5644–5653.10.1039/c3nr01533e
    • (2013) Nanoscale , pp. 5644-5653
    • Liu, R.1    Zhang, H.Y.2    Ji, Z.X.3    Rallo, R.4    Xia, T.5    Chang, C.H.6    Nel, A.7    Cohen, Y.8
  • 26
    • 84873050306 scopus 로고    scopus 로고
    • Dependence of QSAR models on the selection of trial descriptor sets: A demonstration using nanotoxicity endpoints of decorated nanotubes
    • C.-Y. Shao, S.-Z. Chen, B.-H. Su, Y.J. Tseng, E.X. Esposito, and A.J. Hopfinger, Dependence of QSAR models on the selection of trial descriptor sets: A demonstration using nanotoxicity endpoints of decorated nanotubes, J. Chem. Inf. Model. 53 (2013), pp. 142–158.10.1021/ci3005308
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 142-158
    • Shao, C.-Y.1    Chen, S.-Z.2    Su, B.-H.3    Tseng, Y.J.4    Esposito, E.X.5    Hopfinger, A.J.6
  • 27
    • 84893788216 scopus 로고    scopus 로고
    • Nano-quantitative structure–activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells
    • S. Kar, A. Gajewicz, T. Puzyn, and K. Roy, Nano-quantitative structure–activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells, Toxicol. In Vitro 28 (2014), pp. 600–606.10.1016/j.tiv.2013.12.018
    • (2014) Toxicol. In Vitro , vol.28 , pp. 600-606
    • Kar, S.1    Gajewicz, A.2    Puzyn, T.3    Roy, K.4
  • 29
    • 27944496941 scopus 로고    scopus 로고
    • Cell-specific targeting of nanoparticles by multivalent attachment of small molecules
    • R. Weissleder, K. Kelly, E.Y. Sun, T. Shtatland, and L. Josephson, Cell-specific targeting of nanoparticles by multivalent attachment of small molecules, Nat. Biotechnol. 23 (2005), pp. 1418–1423.10.1038/nbt1159
    • (2005) Nat. Biotechnol. , vol.23 , pp. 1418-1423
    • Weissleder, R.1    Kelly, K.2    Sun, E.Y.3    Shtatland, T.4    Josephson, L.5
  • 30
    • 84896359897 scopus 로고    scopus 로고
    • Nano-QSAR modeling for predicting biological activity of diverse nanomaterials
    • K.P. Singh and S. Gupta, Nano-QSAR modeling for predicting biological activity of diverse nanomaterials, RSC Advances 4 (2014), pp. 13215–13230.10.1039/c4ra01274g
    • (2014) RSC Advances , vol.4 , pp. 13215-13230
    • Singh, K.P.1    Gupta, S.2
  • 32
    • 55749100817 scopus 로고    scopus 로고
    • Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations
    • S. Durdagi, T. Mavromoustakos, N. Chronakis, and M.G. Papadopoulos, Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations, Bioorg. Med. Chem. 16 (2008), pp. 9957–9974.10.1016/j.bmc.2008.10.039
    • (2008) Bioorg. Med. Chem. , vol.16 , pp. 9957-9974
    • Durdagi, S.1    Mavromoustakos, T.2    Chronakis, N.3    Papadopoulos, M.G.4
  • 33
    • 76149114231 scopus 로고    scopus 로고
    • SMILES-based optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of balance of correlations
    • A.A. Toropov, A.P. Toropova, E. Benfenati, D. Leszczynska, and J. Leszczynski, SMILES-based optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of balance of correlations, J. Comput. Chem. 31 (2010), pp. 381–392.
    • (2010) J. Comput. Chem. , vol.31 , pp. 381-392
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3    Leszczynska, D.4    Leszczynski, J.5
  • 35
    • 43149095577 scopus 로고    scopus 로고
    • A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response
    • H. Zhou, Q. Mu, N. Gao, A. Liu, Y. Xing, S. Gao, Q. Zhang, G. Qu, Y. Chen, and G. Liu, A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response, Nano Lett. 8 (2008), pp. 859–865.10.1021/nl0730155
    • (2008) Nano Lett. , vol.8 , pp. 859-865
    • Zhou, H.1    Mu, Q.2    Gao, N.3    Liu, A.4    Xing, Y.5    Gao, S.6    Zhang, Q.7    Qu, G.8    Chen, Y.9    Liu, G.10
  • 36
    • 84886946583 scopus 로고    scopus 로고
    • Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO2 nanoparticles
    • A.P. Toropova and A.A. Toropov, Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO2 nanoparticles, Chemosphere 93 (2013), pp. 2650–2655.10.1016/j.chemosphere.2013.09.089
    • (2013) Chemosphere , vol.93 , pp. 2650-2655
    • Toropova, A.P.1    Toropov, A.A.2
  • 37
    • 61449116709 scopus 로고    scopus 로고
    • In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles
    • X. Hu, S. Cook, P. Wang, and H.-M. Hwang, In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles, Sci. Total Environ. 407 (2009), pp. 3070–3072.10.1016/j.scitotenv.2009.01.033
    • (2009) Sci. Total Environ. , vol.407 , pp. 3070-3072
    • Hu, X.1    Cook, S.2    Wang, P.3    Hwang, H.-M.4
  • 38
    • 79954561104 scopus 로고    scopus 로고
    • Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles
    • R. Liu, R. Rallo, S. George, Z. Ji, S. Nair, A.E. Nel, and Y. Cohen, Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles, Small 7 (2011), pp. 1118–1126.10.1002/smll.201002366
    • (2011) Small , vol.7 , pp. 1118-1126
    • Liu, R.1    Rallo, R.2    George, S.3    Ji, Z.4    Nair, S.5    Nel, A.E.6    Cohen, Y.7
  • 40
    • 85194975967 scopus 로고    scopus 로고
    • Nanoinformatics, Arlington, VA:
    • S. Gaheen, caNanoLab Overview, Nanoinformatics, Arlington, VA, 2010.
    • (2010) caNanoLab Overview
    • Gaheen, S.1
  • 41
    • 84884848943 scopus 로고    scopus 로고
    • The Nanomaterial Registry: Facilitating the sharing and analysis of data in the diverse nanomaterial community
    • M.L. Ostraat, K.C. Mills, K.A. Guzan, and D. Murry, The Nanomaterial Registry: Facilitating the sharing and analysis of data in the diverse nanomaterial community, Int. J. Nanomed. 8 (2013), p. 7.
    • (2013) Int. J. Nanomed. , vol.8 , pp. 7
    • Ostraat, M.L.1    Mills, K.C.2    Guzan, K.A.3    Murry, D.4
  • 42
    • 33749682962 scopus 로고    scopus 로고
    • NHECD-Nano health and environmental commented database
    • Maimon O.Z., Rokach L., (eds), Springer, London and New York:
    • O. Maimon and A. Browarnik, NHECD-Nano health and environmental commented database, in Data Mining and Knowledge Discovery Handbook, O.Z. Maimon and L. Rokach, eds., Springer, London and New York, 2010, pp. 1221–1241.10.1007/978-0-387-09823-4
    • (2010) Data Mining and Knowledge Discovery Handbook , pp. 1221-1241
    • Maimon, O.1    Browarnik, A.2
  • 43
    • 84899647322 scopus 로고    scopus 로고
    • Nanoinformatics: Emerging databases and available tools
    • S. Panneerselvam and S. Choi, Nanoinformatics: Emerging databases and available tools, Int. J. Mol. Sci. 15 (2014), pp. 7158–7182.10.3390/ijms15057158
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 7158-7182
    • Panneerselvam, S.1    Choi, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.