메뉴 건너뛰기




Volumn 9, Issue 1, 2015, Pages 147-158

Fast and incoherent dictionary learning algorithms with application to fMRI

Author keywords

Adaptive step size; Blind source separation; Compressed sensing; Dictionary learning; Steepest descent

Indexed keywords

ALGORITHMS; BLIND SOURCE SEPARATION; COMPRESSED SENSING; FUNCTIONAL NEUROIMAGING; MAGNETIC RESONANCE IMAGING; STEEPEST DESCENT METHOD;

EID: 84925861039     PISSN: 18631703     EISSN: 18631711     Source Type: Journal    
DOI: 10.1007/s11760-013-0429-2     Document Type: Article
Times cited : (70)

References (44)
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
    • Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 27844460570 scopus 로고    scopus 로고
    • Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA)
    • Elad, M., Starck, J., Querre, P., Donoho, D.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Computat. Harmon. Anal. 19(3), 340–358 (2005)
    • (2005) Appl. Computat. Harmon. Anal. , vol.19 , Issue.3 , pp. 340-358
    • Elad, M.1    Starck, J.2    Querre, P.3    Donoho, D.4
  • 4
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 5
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (February 2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 8
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis
    • Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)
    • (1997) Res , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 11
    • 84939470098 scopus 로고    scopus 로고
    • Sapiro G.: Sparse modeling with universal priors and learned incoherent dictionaries. NIPS
    • Ramirez, I., Lecumberry, F., Sapiro G.: Sparse modeling with universal priors and learned incoherent dictionaries. NIPS (2009, submitted)
    • (2009) Lecumberry, F.
    • Ramirez, I.1
  • 12
    • 78049373472 scopus 로고    scopus 로고
    • Structured and incoherent parametric dictionary design. In; Proceedings of the IEEE International Conference on Acoustics, Speech, and, Signal Processing
    • Yaghoobi, M., Daudet, L., Davies, ME.: Structured and incoherent parametric dictionary design. In; Proceedings of the IEEE International Conference on Acoustics, Speech, and, Signal Processing, ICASSP’10, pp. 5486–5489 (2010)
    • (2010) ICASSP’10 , pp. 5486-5489
    • Yaghoobi, M.1    Daudet, L.2    Davies, M.E.3
  • 17
    • 84861112756 scopus 로고    scopus 로고
    • Blind separation of image sources via adaptive dictionary learning
    • Abolghasemi, V., Ferdowsi, S., Sanei, S.: Blind separation of image sources via adaptive dictionary learning. IEEE Trans. Image Process. 21(6), 2921–2930 (2012)
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.6 , pp. 2921-2930
    • Abolghasemi, V.1    Ferdowsi, S.2    Sanei, S.3
  • 18
    • 80855137039 scopus 로고    scopus 로고
    • A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries
    • Filipovi, M., Kopriva, I.: A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries. Inverse Probl. Imaging 5(4), 815–841 (2011)
    • (2011) Inverse Probl. Imaging , vol.5 , Issue.4 , pp. 815-841
    • Filipovi, M.1    Kopriva, I.2
  • 19
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition
    • Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition. Neural Comput. 13, 863–882 (1999)
    • (1999) Neural Comput. , vol.13 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2
  • 23
    • 79955571265 scopus 로고    scopus 로고
    • A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion
    • Kangjoo, L., Sungho, T., Jong, C.Y.: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion. IEEE Trans. Med. Imaging 30(5), 1076–1089 (2011)
    • (2011) IEEE Trans. Med. Imaging , vol.30 , Issue.5 , pp. 1076-1089
    • Kangjoo, L.1    Sungho, T.2    Jong, C.Y.3
  • 24
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)
    • (2007) IEEE Trans. Inf. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 26
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm
    • Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (March 1997)
    • (1997) IEEE Trans. Signal Process , vol.45 , Issue.3 , pp. 600-616
    • Gorodnitsky, I.1    Rao, B.2
  • 31
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 32
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of block coordinate descent method for non-differentiable minimization
    • Tseng, P.: Convergence of block coordinate descent method for non-differentiable minimization. J. Optim. Theory Appl. 109, 475–494 (2001)
    • (2001) J. Optim. Theory Appl. , vol.109 , pp. 475-494
    • Tseng, P.1
  • 33
  • 34
    • 36348936685 scopus 로고    scopus 로고
    • Sparsity and morphological diversity in blind source separation
    • Bobin, J., Starck, J.L., Fadili, J., Moudden, Y.: Sparsity and morphological diversity in blind source separation. IEEE Trans. Image Process. 16(11), 2662–2674 (2007)
    • (2007) IEEE Trans. Image Process , vol.16 , Issue.11 , pp. 2662-2674
    • Bobin, J.1    Starck, J.L.2    Fadili, J.3    Moudden, Y.4
  • 35
    • 0027609793 scopus 로고
    • A stochastic gradient adaptive filter with gradient adaptive step size
    • Mathews, V., Xie, Z.: A stochastic gradient adaptive filter with gradient adaptive step size. IEEE Trans. Signal Process. 41(6), 2075–2087 (1993)
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.6 , pp. 2075-2087
    • Mathews, V.1    Xie, Z.2
  • 37
    • 2442473143 scopus 로고    scopus 로고
    • Analysis of sparse representation and blind source separation
    • Li, Y., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source separation. Neural Comput. 16, 1193–1234 (2004)
    • (2004) Neural Comput. , vol.16 , pp. 1193-1234
    • Li, Y.1    Cichocki, A.2    Amari, S.3
  • 39
    • 77951169269 scopus 로고    scopus 로고
    • Bayesian orthogonal component analysis for sparse representation
    • Dobigeon, N., Tourneret, J.Y.: Bayesian orthogonal component analysis for sparse representation. IEEE Trans. Signal Process. 58(5), 2675–2685 (2010)
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.5 , pp. 2675-2685
    • Dobigeon, N.1    Tourneret, J.Y.2
  • 41
    • 84939472404 scopus 로고    scopus 로고
    • MLSP-Lab
    • MLSP-Lab. http://mlsp.umbc.edu/simulated_fmri_data.html
  • 42
    • 84939472907 scopus 로고    scopus 로고
    • The FastICA package for MATLAB
    • The FastICA package for MATLAB. http://research.ics.tkk.fi/ica/fastica/
  • 43
    • 84939468135 scopus 로고    scopus 로고
    • Statitstical parameter mapping (SPM) website
    • Statitstical parameter mapping (SPM) website. http://www.fil.ion.ucl.ac.uk/spm/
  • 44
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
    • Qian, Y., Jia, S., Zhou, J., Robles-Kelly, A.: Hyperspectral unmixing via $$L_{1/2}$$ sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 49, 4282–4297 (2011)
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.