메뉴 건너뛰기




Volumn 3, Issue 3, 2010, Pages 646-669

Learning the morphological diversity

Author keywords

Adaptive morphological component analysis; Cartoon images; Dictionary learning; Image separation; Inpainting; Sparsity; Texture; Wavelets

Indexed keywords

CARTOON IMAGES; DICTIONARY LEARNING; IMAGE SEPARATION; INPAINTING; MORPHOLOGICAL COMPONENT ANALYSIS; SPARSITY; WAVELETS;

EID: 78651537409     PISSN: None     EISSN: 19364954     Source Type: Journal    
DOI: 10.1137/090770783     Document Type: Article
Times cited : (58)

References (61)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • The K-SVD: An algorithm for designing of overcompletedictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein, The K-SVD: An algorithm for designing of overcompletedictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), pp. 4311-4322.
    • (2006) IEEE Trans. Signal Process. , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 14844355103 scopus 로고    scopus 로고
    • Image decomposition into a boundedvariation component and an oscillating component
    • J. F. Aujol, G. Aubert, L. Blanc-Feraud, and A. Chambolle, Image decomposition into a boundedvariation component and an oscillating component, J. Math. Imaging Vision, 22 (2005), pp. 71-88.
    • (2005) J. Math. Imaging Vision , vol.22 , pp. 71-88
    • Aujol, J.F.1    Aubert, G.2    Blanc-Feraud, L.3    Chambolle, A.4
  • 4
    • 0030832881 scopus 로고    scopus 로고
    • The independent components of natural scenes are edge filters
    • A. J. Bell and T. J. Sejnowski, The independent components of natural scenes are edge filters, VisionResearch, 37 (1997), pp. 3327-3338.
    • (1997) VisionResearch , vol.37 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 6
    • 33645136947 scopus 로고    scopus 로고
    • Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class ofheavy-tailed priors
    • J. Bioucas-Dias, Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class ofheavy-tailed priors, IEEE Trans. Image Process., 15 (2006), pp. 937-951.
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 937-951
    • Bioucas-Dias, J.1
  • 7
    • 36348936685 scopus 로고    scopus 로고
    • Sparsity and morphological diversity in blindsource separation
    • J. Bobin, J.-L. Starck, J. Fadili, and Y. Moudden, Sparsity and morphological diversity in blindsource separation, IEEE Trans. Image Process., 16 (2007), pp. 2662-2674.
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 2662-2674
    • Bobin, J.1    Starck, J.-L.2    Fadili, J.3    Moudden, Y.4
  • 9
    • 2442458882 scopus 로고    scopus 로고
    • New tight frames of curvelets and optimal representations of objects withpiecewise C2 singularities
    • E. Candès and D. Donoho, New tight frames of curvelets and optimal representations of objects withpiecewise C2 singularities, Comm. Pure Appl. Math., 57 (2004), pp. 219-266.
    • (2004) Comm. Pure Appl. Math. , vol.57 , pp. 219-266
    • Candès, E.1    Donoho, D.2
  • 12
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, MultiscaleModel. Simul., 4 (2005), pp. 1168-1200.
    • (2005) MultiscaleModel. Simul. , vol.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 13
    • 4344675264 scopus 로고    scopus 로고
    • Region filling and object removal by exemplar-based imageinpainting
    • A. Criminisi, P. Pérez, and K. Toyama, Region filling and object removal by exemplar-based imageinpainting, IEEE Trans. Image Process., 13 (2004), pp. 1200-1212.
    • (2004) IEEE Trans. Image Process. , vol.13 , pp. 1200-1212
    • Criminisi, A.1    Pérez, P.2    Toyama, K.3
  • 14
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverseproblems with a sparsity constraint
    • I. Daubechies, M. Defrise, and C. D. Mol, An iterative thresholding algorithm for linear inverseproblems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413-1541.
    • (2004) Comm. Pure Appl. Math. , vol.57 , pp. 1413-1541
    • Daubechies, I.1    Defrise, M.2    Mol, C.D.3
  • 15
    • 35148877210 scopus 로고    scopus 로고
    • Wave atoms and sparsity of oscillatory patterns
    • L. Demanet and L. Ying, Wave atoms and sparsity of oscillatory patterns, Appl. Comput. Harmon.Anal., 23 (2007), pp. 368-387.
    • (2007) Appl. Comput. Harmon.Anal. , vol.23 , pp. 368-387
    • Demanet, L.1    Ying, L.2
  • 16
    • 0033248623 scopus 로고    scopus 로고
    • Wedgelets: Nearly minimax estimation of edges
    • D. Donoho, Wedgelets: Nearly minimax estimation of edges, Ann. Statist., 27 (1999), pp. 859-897.
    • (1999) Ann. Statist. , vol.27 , pp. 859-897
    • Donoho, D.1
  • 17
    • 0041958932 scopus 로고
    • Ideal spatial adaptation via wavelet shrinkage
    • D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81 (1994),pp. 425-455.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 20
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learneddictionaries
    • M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learneddictionaries, IEEE Trans. Image Process., 15 (2006), pp. 3736-3745.
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 21
    • 34249671661 scopus 로고    scopus 로고
    • Analysis versus synthesis in signal priors
    • M. Elad, P. Milanfar, and R. Rubinstein, Analysis versus synthesis in signal priors, Inverse Problems,23 (2007), pp. 947-968.
    • (2007) Inverse Problems , vol.23 , pp. 947-968
    • Elad, M.1    Milanfar, P.2    Rubinstein, R.3
  • 22
    • 27844460570 scopus 로고    scopus 로고
    • Simultaneous cartoon and texture image inpaintingusing morphological component analysis (MCA)
    • M. Elad, J.-L. Starck, D. Donoho, and P. Querre, Simultaneous cartoon and texture image inpaintingusing morphological component analysis (MCA), Appl. Comput. Harmon. Anal., 19 (2005),pp. 340-358.
    • (2005) Appl. Comput. Harmon. Anal. , vol.19 , pp. 340-358
    • Elad, M.1    Starck, J.-L.2    Donoho, D.3    Querre, P.4
  • 24
    • 42149166280 scopus 로고    scopus 로고
    • Sparse representation-based image deconvolution by iterative thresholding
    • in, F. Murtagh and J.-L. Starck,eds., Marseille, France, CEA Saclay, Gif-sur-Yvette, France
    • M. J. Fadili and J.-L. Starck, Sparse representation-based image deconvolution by iterative thresholding,in Proceedings of the Astronomical Data Analysis Conference IV, F. Murtagh and J.-L. Starck,eds., Marseille, France, CEA Saclay, Gif-sur-Yvette, France, 2006.
    • (2006) Proceedings of the Astronomical Data Analysis Conference IV
    • Fadili, M.J.1    Starck, J.-L.2
  • 25
    • 60649102899 scopus 로고    scopus 로고
    • Inpainting and zooming using sparse representations
    • M. J. Fadili, J.-L. Starck, and F. Murtagh, Inpainting and zooming using sparse representations,Computer J., 52 (2007), pp. 64-79.
    • (2007) Computer J. , vol.52 , pp. 64-79
    • Fadili, M.J.1    Starck, J.-L.2    Murtagh, F.3
  • 26
    • 0142200827 scopus 로고    scopus 로고
    • An EM algorithm for wavelet-based image restoration
    • M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans.Image Process., 12 (2003), pp. 906-916.
    • (2003) IEEE Trans.Image Process. , vol.12 , pp. 906-916
    • Figueiredo, M.1    Nowak, R.2
  • 29
    • 33748423853 scopus 로고    scopus 로고
    • Bandelet image approximation and compression
    • E. Le Pennec and S. Mallat, Bandelet image approximation and compression, Multiscale Model.Simul., 4 (2005), pp. 992-1039.
    • (2005) Multiscale Model.Simul. , vol.4 , pp. 992-1039
    • le Pennec, E.1    Mallat, S.2
  • 31
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • M. S. Lewicki and T. J. Sejnowski, Learning overcomplete representations, Neural Comput., 12 (2000),pp. 337-365.
    • (2000) Neural Comput. , vol.12 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 32
    • 51849090507 scopus 로고    scopus 로고
    • Image restoration and decomposition via bounded total variation and negativeHilbert-Sobolev spaces
    • L. Lieu and L. Vese, Image restoration and decomposition via bounded total variation and negativeHilbert-Sobolev spaces, Appl. Math. Optim., 58 (2008), pp. 167-193.
    • (2008) Appl. Math. Optim. , vol.58 , pp. 167-193
    • Lieu, L.1    Vese, L.2
  • 33
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparsecoding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparsecoding, J. Machine Learning Res., 11 (2010), pp. 19-60.
    • (2010) J. Machine Learning Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 36
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restoration, IEEE Trans.Image Process., 17 (2008), pp. 53-69.
    • (2008) IEEE Trans.Image Process. , vol.17 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 38
  • 39
    • 52349096502 scopus 로고    scopus 로고
    • Orthogonal bandlet bases for geometric images approximation
    • S. Mallat and G. Peyré, Orthogonal bandlet bases for geometric images approximation, Comm. PureAppl. Math., 61 (2008), pp. 1173-1212.
    • (2008) Comm. PureAppl. Math. , vol.61 , pp. 1173-1212
    • Mallat, S.1    Peyré, G.2
  • 40
    • 0036474805 scopus 로고    scopus 로고
    • Disocclusion: A variational approach using level lines
    • S. Masnou, Disocclusion: A variational approach using level lines, IEEE Trans. Image Process., 11(2002), pp. 68-76.
    • (2002) IEEE Trans. Image Process. , vol.11 , pp. 68-76
    • Masnou, S.1
  • 41
    • 0000981459 scopus 로고    scopus 로고
    • Brushlets: A tool for directional image analysis and image compression
    • F. G. Meyer and R. R. Coifman, Brushlets: A tool for directional image analysis and image compression,Appl. Comput. Harmon. Anal., 5 (1997), pp. 147-187.
    • (1997) Appl. Comput. Harmon. Anal. , vol.5 , pp. 147-187
    • Meyer, F.G.1    Coifman, R.R.2
  • 43
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Yu. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), pp. 127-152.
    • (2005) Math. Program. , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 44
    • 57649169327 scopus 로고    scopus 로고
    • Gradient Methods for Minimizing Composite Objective Function
    • Center for Operations Research and Econometrics (CORE), Université catholique deLouvain, Louvain-la-Neuve, Belgium
    • Yu. Nesterov, Gradient Methods for Minimizing Composite Objective Function, CORE Discussion Papers2007/76, Center for Operations Research and Econometrics (CORE), Université catholique deLouvain, Louvain-la-Neuve, Belgium, 2007.
    • (2007) CORE Discussion Papers2007/76
    • Nesterov, Y.1
  • 45
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive-field properties by learning asparse code for natural images
    • B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning asparse code for natural images, Nature, 381 (1996), pp. 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 46
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in leastsquares problems
    • M. R. Osborne, B. Presnell, and B. A. Turlach, A new approach to variable selection in leastsquares problems, IMA J. Numer. Anal., 20 (2000), pp. 389-403.
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.R.1    Presnell, B.2    Turlach, B.A.3
  • 47
    • 76949094445 scopus 로고    scopus 로고
    • Multichannel nonnegative matrix factorization in convolutive mixturesfor audio source separation
    • A. Ozerov and C. Févotte, Multichannel nonnegative matrix factorization in convolutive mixturesfor audio source separation, IEEE Trans. Audio, Speech, and Language Processing, 18 (2010), pp.550-563.
    • (2010) IEEE Trans. Audio, Speech, and Language Processing , vol.18 , pp. 550-563
    • Ozerov, A.1    Févotte, C.2
  • 48
    • 67349215512 scopus 로고    scopus 로고
    • Sparse modeling of textures
    • G. Peyré, Sparse modeling of textures, J. Math. Imaging Vision, 34 (2009), pp. 17-31.
    • (2009) J. Math. Imaging Vision , vol.34 , pp. 17-31
    • Peyré, G.1
  • 50
    • 42149162472 scopus 로고    scopus 로고
    • Learning dictionaries for geometry and texture separation
    • in, SPIE, Bellingham, WA
    • G. Peyré, J. Fadili, and J. Starck, Learning dictionaries for geometry and texture separation, inProceedings of SPIE, Wavelets XII, SPIE, Bellingham, WA, 2007.
    • (2007) Proceedings of SPIE, Wavelets XII
    • Peyré, G.1    Fadili, J.2    Starck, J.3
  • 52
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys.D, 60 (1992), pp. 259-268.
    • (1992) Phys.D , vol.60 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 54
    • 3142656055 scopus 로고    scopus 로고
    • Redundant multiscale transforms and their application formorphological component analysis
    • J.-L. Starck, M. Elad, and D. Donoho, Redundant multiscale transforms and their application formorphological component analysis, Adv. Imag. Electron Phys., 132 (2004), pp. 287-348.
    • (2004) Adv. Imag. Electron Phys. , vol.132 , pp. 287-348
    • Starck, J.-L.1    Elad, M.2    Donoho, D.3
  • 55
    • 27744574209 scopus 로고    scopus 로고
    • Image decomposition via the combination of sparse representationand a variational approach
    • J.-L. Starck, M. Elad, and D. Donoho, Image decomposition via the combination of sparse representationand a variational approach, IEEE Trans. Image Process., 14 (2005), pp. 1570-1582.
    • (2005) IEEE Trans. Image Process. , vol.14 , pp. 1570-1582
    • Starck, J.-L.1    Elad, M.2    Donoho, D.3
  • 57
    • 17144426986 scopus 로고    scopus 로고
    • Vector-valued image regularization with PDEs: A common frameworkfor different applications
    • D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: A common frameworkfor different applications, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005), pp. 506-517.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 506-517
    • Tschumperlé, D.1    Deriche, R.2
  • 59
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim.Theory Appl., 109 (2001), pp. 475-494.
    • (2001) J. Optim.Theory Appl. , vol.109 , pp. 475-494
    • Tseng, P.1
  • 60
    • 0347900511 scopus 로고    scopus 로고
    • Modeling textures with total variation minimization and oscillating patterns inimage processing
    • L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns inimage processing, J. Sci. Comput., 19 (2003), pp. 553-572.
    • (2003) J. Sci. Comput. , vol.19 , pp. 553-572
    • Vese, L.1    Osher, S.2
  • 61
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signaldictionary
    • M. Zibulevsky and B. A. Pearlmutter, Blind source separation by sparse decomposition in a signaldictionary, Neural Comput., 13 (2001), pp. 863-882.
    • (2001) Neural Comput. , vol.13 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.