-
1
-
-
84892601165
-
Targeted therapy using nanotechnology: focus on cancer
-
Sanna V., et al. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 2014, 9:467-483.
-
(2014)
Int. J. Nanomed.
, vol.9
, pp. 467-483
-
-
Sanna, V.1
-
2
-
-
61849153021
-
Impact of nanotechnology on drug delivery
-
Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3:16-20.
-
(2009)
ACS Nano
, vol.3
, pp. 16-20
-
-
Farokhzad, O.C.1
Langer, R.2
-
4
-
-
51049090204
-
Nanoparticle therapeutics: an emerging treatment modality for cancer
-
Davis M.E., et al. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7:771-782.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, pp. 771-782
-
-
Davis, M.E.1
-
5
-
-
84867650550
-
Interactions of nanomaterials and biological systems: implications to personalized nanomedicine
-
Zhang X.Q., et al. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 2012, 64:1363-1384.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.64
, pp. 1363-1384
-
-
Zhang, X.Q.1
-
6
-
-
84892650579
-
Cancer nanomedicine: from drug delivery to imaging
-
216rv4
-
Chow E.K.H., Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci. Transl. Med. 2013, 5:216rv4.
-
(2013)
Sci. Transl. Med.
, vol.5
-
-
Chow, E.K.H.1
Ho, D.2
-
7
-
-
59349116903
-
Knocking down barriers: advances in siRNA delivery
-
Whitehead K.A., et al. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8:129-138.
-
(2009)
Nat. Rev. Drug Discov.
, vol.8
, pp. 129-138
-
-
Whitehead, K.A.1
-
8
-
-
79960627452
-
Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery
-
Shi J., et al. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew. Chem. Int. Ed. Engl. 2011, 50:7027-7031.
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, pp. 7027-7031
-
-
Shi, J.1
-
9
-
-
33646891110
-
Induction of the interferon response by siRNA is cell type- and duplex length-dependent
-
Reynolds A., et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 2006, 12:988-993.
-
(2006)
RNA
, vol.12
, pp. 988-993
-
-
Reynolds, A.1
-
10
-
-
84858652159
-
Targeted polymeric therapeutic nanoparticles: design, development and clinical translation
-
Kamaly N., et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 2012, 41:2971-3010.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2971-3010
-
-
Kamaly, N.1
-
11
-
-
79955463389
-
Polymer nanoparticles: preparation techniques and size-control parameters
-
Rao J.P., Geckeler K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36:887-913.
-
(2011)
Prog. Polym. Sci.
, vol.36
, pp. 887-913
-
-
Rao, J.P.1
Geckeler, K.E.2
-
12
-
-
84887612564
-
Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications
-
Capretto L., et al. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv. Drug Deliv. Rev. 2013, 65:1496-1532.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 1496-1532
-
-
Capretto, L.1
-
13
-
-
33747117373
-
The origins and the future of microfluidics
-
Whitesides G.M. The origins and the future of microfluidics. Nature 2006, 442:368-373.
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
14
-
-
84871033897
-
Microfluidic technologies for accelerating the clinical translation of nanoparticles
-
Valencia P.M., et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 2012, 7:623-629.
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 623-629
-
-
Valencia, P.M.1
-
15
-
-
84903478448
-
Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer
-
Lim J.M., et al. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 2014, 8:6056-6065.
-
(2014)
ACS Nano
, vol.8
, pp. 6056-6065
-
-
Lim, J.M.1
-
16
-
-
84891362991
-
Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy
-
Valencia P.M., et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 2013, 7:10671-10680.
-
(2013)
ACS Nano
, vol.7
, pp. 10671-10680
-
-
Valencia, P.M.1
-
17
-
-
84895071390
-
Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study
-
Lim J.M., et al. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomedicine 2014, 10:401-409.
-
(2014)
Nanomedicine
, vol.10
, pp. 401-409
-
-
Lim, J.M.1
-
18
-
-
84878392927
-
Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives
-
Windbergs M., et al. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc. 2013, 135:7933-7937.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 7933-7937
-
-
Windbergs, M.1
-
19
-
-
84877248429
-
One step formation of controllable complex emulsions: from functional particles to simultaneous encapsulation of hydrophilic and hydrophobic agents into desired position
-
Choi C-H., et al. One step formation of controllable complex emulsions: from functional particles to simultaneous encapsulation of hydrophilic and hydrophobic agents into desired position. Adv. Mater. 2013, 25:2535.
-
(2013)
Adv. Mater.
, vol.25
, pp. 2535
-
-
Choi, C.-H.1
-
21
-
-
79959971282
-
Nanoparticle PEGylation for imaging and therapy
-
Jokerst J.V., et al. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6:715-728.
-
(2011)
Nanomedicine
, vol.6
, pp. 715-728
-
-
Jokerst, J.V.1
-
22
-
-
0343191443
-
'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption
-
Gref R., et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B. Biointerfaces 2000, 18:301-313.
-
(2000)
Colloids Surf. B. Biointerfaces
, vol.18
, pp. 301-313
-
-
Gref, R.1
-
23
-
-
0033168385
-
Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles
-
Peracchia M.T., et al. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials 1999, 20:1269-1275.
-
(1999)
Biomaterials
, vol.20
, pp. 1269-1275
-
-
Peracchia, M.T.1
-
24
-
-
0028916155
-
Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system
-
Bazile D., et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 1995, 84:493-498.
-
(1995)
J. Pharm. Sci.
, vol.84
, pp. 493-498
-
-
Bazile, D.1
-
25
-
-
0032588348
-
Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting
-
Peracchia M.T., et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J. Control. Release 1999, 60:121-128.
-
(1999)
J. Control. Release
, vol.60
, pp. 121-128
-
-
Peracchia, M.T.1
-
26
-
-
84864706328
-
Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics
-
Radovic-Moreno A.F., et al. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 2012, 6:4279-4287.
-
(2012)
ACS Nano
, vol.6
, pp. 4279-4287
-
-
Radovic-Moreno, A.F.1
-
27
-
-
79953066932
-
A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma
-
Hatakeyama H., et al. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev. 2011, 63:152-160.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 152-160
-
-
Hatakeyama, H.1
-
28
-
-
84898887161
-
Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production
-
Yang W., et al. Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production. Nano Today 2014, 9:10-16.
-
(2014)
Nano Today
, vol.9
, pp. 10-16
-
-
Yang, W.1
-
29
-
-
83655197598
-
Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity
-
Keefe A.J., Jiang S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 2012, 4:59-63.
-
(2012)
Nat. Chem.
, vol.4
, pp. 59-63
-
-
Keefe, A.J.1
Jiang, S.2
-
30
-
-
84900388188
-
A robust graft-to strategy to form multifunctional and stealth zwitterionic polymer-coated mesoporous silica nanoparticles
-
Zhu Y., et al. A robust graft-to strategy to form multifunctional and stealth zwitterionic polymer-coated mesoporous silica nanoparticles. Biomacromolecules 2014, 15:1845-1851.
-
(2014)
Biomacromolecules
, vol.15
, pp. 1845-1851
-
-
Zhu, Y.1
-
31
-
-
84867503516
-
Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor
-
Yuan Y.Y., et al. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 2012, 24:5476-5480.
-
(2012)
Adv. Mater.
, vol.24
, pp. 5476-5480
-
-
Yuan, Y.Y.1
-
32
-
-
77953235193
-
Nanoparticle technologies for cancer therapy
-
Alexis F., et al. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol. 2010, 197:55-86.
-
(2010)
Handb. Exp. Pharmacol.
, vol.197
, pp. 55-86
-
-
Alexis, F.1
-
33
-
-
84874169973
-
Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
-
Rodriguez P.L., et al. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339:971-975.
-
(2013)
Science
, vol.339
, pp. 971-975
-
-
Rodriguez, P.L.1
-
34
-
-
79960583505
-
Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
-
Hu C.M., et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10980-10985.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10980-10985
-
-
Hu, C.M.1
-
35
-
-
84880917692
-
First-in-human Phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies
-
Weiss G.J., et al. First-in-human Phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest. New Drugs 2013, 31:986-1000.
-
(2013)
Invest. New Drugs
, vol.31
, pp. 986-1000
-
-
Weiss, G.J.1
-
36
-
-
84861442552
-
Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery
-
Karve S., et al. Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8230-8235.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 8230-8235
-
-
Karve, S.1
-
37
-
-
79953035086
-
PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
-
Acharya S., Sahoo S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev. 2011, 63:170-183.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 170-183
-
-
Acharya, S.1
Sahoo, S.K.2
-
38
-
-
60749108001
-
Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect
-
Maeda H., et al. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009, 71:409-419.
-
(2009)
Eur. J. Pharm. Biopharm.
, vol.71
, pp. 409-419
-
-
Maeda, H.1
-
39
-
-
79953048071
-
Tumor delivery of macromolecular drugs based on the EPR effect
-
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63:131-135.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 131-135
-
-
Torchilin, V.1
-
40
-
-
84896699451
-
Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology
-
Bertrand N., et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014, 66:2-25.
-
(2014)
Adv. Drug Deliv. Rev.
, vol.66
, pp. 2-25
-
-
Bertrand, N.1
-
41
-
-
79953054576
-
The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
-
Fang J., et al. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63:136-151.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 136-151
-
-
Fang, J.1
-
42
-
-
84873268296
-
The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo
-
Maeda H., et al. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65:71-79.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 71-79
-
-
Maeda, H.1
-
43
-
-
84873275186
-
Cancer nanomedicines: so many papers and so few drugs!
-
Venditto V.J., Szoka F.C. Cancer nanomedicines: so many papers and so few drugs!. Adv. Drug Deliv. Rev. 2013, 65:80-88.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 80-88
-
-
Venditto, V.J.1
Szoka, F.C.2
-
44
-
-
84861669644
-
® - the first FDA-approved nano-drug: lessons learned
-
® - the first FDA-approved nano-drug: lessons learned. J. Control. Release 2012, 160:117-134.
-
(2012)
J. Control. Release
, vol.160
, pp. 117-134
-
-
Barenholz, Y.1
-
45
-
-
0022858683
-
A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS
-
Matsumura Y.M. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986, 46:6387-6392.
-
(1986)
Cancer Res.
, vol.46
, pp. 6387-6392
-
-
Matsumura, Y.M.1
-
46
-
-
76349111051
-
Rational design of cationic lipids for siRNA delivery
-
Semple S.C., et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28:172-176.
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 172-176
-
-
Semple, S.C.1
-
47
-
-
84883118140
-
Safety and efficacy of RNAi therapy for transthyretin amyloidosis
-
Coelho T., et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 2013, 369:819-829.
-
(2013)
N. Engl. J. Med.
, vol.369
, pp. 819-829
-
-
Coelho, T.1
-
48
-
-
77949904204
-
Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer
-
Shi W., et al. Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int. J. Cancer 2010, 126:2036-2048.
-
(2010)
Int. J. Cancer
, vol.126
, pp. 2036-2048
-
-
Shi, W.1
-
49
-
-
84893624537
-
Lipid nanoparticle delivery systems for siRNA-based therapeutics
-
Wan C., et al. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv. Transl. Res. 2013, 4:74-83.
-
(2013)
Drug Deliv. Transl. Res.
, vol.4
, pp. 74-83
-
-
Wan, C.1
-
50
-
-
79959963318
-
Extravasation of polymeric nanomedicines across tumor vasculature
-
Danquah M.K., et al. Extravasation of polymeric nanomedicines across tumor vasculature. Adv. Drug Deliv. Rev. 2011, 63:623-639.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 623-639
-
-
Danquah, M.K.1
-
51
-
-
84864258079
-
The effect of nanoparticle size, shape, and surface chemistry on biological systems
-
Albanese A., et al. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14:1-16.
-
(2012)
Annu. Rev. Biomed. Eng.
, vol.14
, pp. 1-16
-
-
Albanese, A.1
-
52
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D., et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2:751-760.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 751-760
-
-
Peer, D.1
-
53
-
-
84881454232
-
Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance
-
Ge Z., Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42:7289-7325.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 7289-7325
-
-
Ge, Z.1
Liu, S.2
-
54
-
-
79959872019
-
Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles
-
Valencia P.M., et al. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 2011, 32:6226-6233.
-
(2011)
Biomaterials
, vol.32
, pp. 6226-6233
-
-
Valencia, P.M.1
-
55
-
-
67249128859
-
The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic
-
Davis M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 2009, 6:659-668.
-
(2009)
Mol. Pharm.
, vol.6
, pp. 659-668
-
-
Davis, M.E.1
-
56
-
-
77951132901
-
Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles
-
Davis M.E., et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464:1067-1070.
-
(2010)
Nature
, vol.464
, pp. 1067-1070
-
-
Davis, M.E.1
-
57
-
-
80054986446
-
Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy
-
Zhang X.Q., et al. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv. Mater. 2011, 23:4770-4775.
-
(2011)
Adv. Mater.
, vol.23
, pp. 4770-4775
-
-
Zhang, X.Q.1
-
58
-
-
0025951931
-
Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis
-
Leamon C.P., Low P.S. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. U.S.A. 1991, 88:5572-5576.
-
(1991)
Proc. Natl. Acad. Sci. U.S.A.
, vol.88
, pp. 5572-5576
-
-
Leamon, C.P.1
Low, P.S.2
-
59
-
-
52549083788
-
Tumor detection using folate receptor-targeted imaging agents
-
Sega E.I., Low P.S. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 2008, 27:655-664.
-
(2008)
Cancer Metastasis Rev.
, vol.27
, pp. 655-664
-
-
Sega, E.I.1
Low, P.S.2
-
60
-
-
84858665432
-
Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile
-
Hrkach J., et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 2012, 4:128ra139.
-
(2012)
Sci. Transl. Med.
, vol.4
, pp. 128ra139
-
-
Hrkach, J.1
-
61
-
-
84865604935
-
Targeting cancer cells: controlling the binding and internalization of antibody-functionalized capsules
-
Johnston A.P., et al. Targeting cancer cells: controlling the binding and internalization of antibody-functionalized capsules. ACS Nano 2012, 6:6667-6674.
-
(2012)
ACS Nano
, vol.6
, pp. 6667-6674
-
-
Johnston, A.P.1
-
62
-
-
84872401360
-
A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics
-
Steichen S.D., et al. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 2012, 48:416-427.
-
(2012)
Eur. J. Pharm. Sci.
, vol.48
, pp. 416-427
-
-
Steichen, S.D.1
-
63
-
-
84862646346
-
Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery"
-
Mahon E., et al. Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery". J. Control. Release 2012, 161:164-174.
-
(2012)
J. Control. Release
, vol.161
, pp. 164-174
-
-
Mahon, E.1
-
64
-
-
84888201303
-
Role of integrated cancer nanomedicine in overcoming drug resistance
-
Iyer A.K., et al. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev. 2013, 65:1784-1802.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 1784-1802
-
-
Iyer, A.K.1
-
65
-
-
33747847740
-
Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer [Adjuvant Navelbine International Trialist Association (ANITA)]: a randomised controlled trial
-
Douillard J-Y., et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer [Adjuvant Navelbine International Trialist Association (ANITA)]: a randomised controlled trial. Lancet Oncol. 2006, 7:719-727.
-
(2006)
Lancet Oncol.
, vol.7
, pp. 719-727
-
-
Douillard, J.-Y.1
-
66
-
-
33745530224
-
Randomized Phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer
-
Robert N., et al. Randomized Phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J. Clin. Oncol. 2006, 24:2786-2792.
-
(2006)
J. Clin. Oncol.
, vol.24
, pp. 2786-2792
-
-
Robert, N.1
-
67
-
-
84877680982
-
Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles
-
Valencia P.M., et al. Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine 2013, 8:687-698.
-
(2013)
Nanomedicine
, vol.8
, pp. 687-698
-
-
Valencia, P.M.1
-
68
-
-
84888883621
-
Nanoparticles for combination drug therapy
-
Ma L., et al. Nanoparticles for combination drug therapy. ACS Nano 2013, 7:9518-9525.
-
(2013)
ACS Nano
, vol.7
, pp. 9518-9525
-
-
Ma, L.1
-
69
-
-
79952757852
-
First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia
-
Feldman E.J., et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol. 2011, 29:979-985.
-
(2011)
J. Clin. Oncol.
, vol.29
, pp. 979-985
-
-
Feldman, E.J.1
-
70
-
-
59449102334
-
Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors
-
Batist G., et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin. Cancer Res. 2009, 15:692-700.
-
(2009)
Clin. Cancer Res.
, vol.15
, pp. 692-700
-
-
Batist, G.1
-
71
-
-
84874736925
-
Combined delivery of paclitaxel and tanespimycin via micellar nanocarriers: pharmacokinetics, efficacy and metabolomic analysis
-
Katragadda U., et al. Combined delivery of paclitaxel and tanespimycin via micellar nanocarriers: pharmacokinetics, efficacy and metabolomic analysis. PLoS ONE 2013, 8:e58619.
-
(2013)
PLoS ONE
, vol.8
, pp. e58619
-
-
Katragadda, U.1
-
72
-
-
84887467125
-
Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment
-
Nishimura M., et al. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov. 2013, 3:1302-1315.
-
(2013)
Cancer Discov.
, vol.3
, pp. 1302-1315
-
-
Nishimura, M.1
-
73
-
-
28844447276
-
EphA2 as a target for ovarian cancer therapy
-
Landen C.N., et al. EphA2 as a target for ovarian cancer therapy. Expert Opin. Ther. Targets 2005, 9:1179-1187.
-
(2005)
Expert Opin. Ther. Targets
, vol.9
, pp. 1179-1187
-
-
Landen, C.N.1
-
74
-
-
84877120847
-
First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement
-
Tabernero J., et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013, 3:406-417.
-
(2013)
Cancer Discov.
, vol.3
, pp. 406-417
-
-
Tabernero, J.1
-
75
-
-
84887443743
-
Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug
-
Xu X., et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:18638-18643.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 18638-18643
-
-
Xu, X.1
-
76
-
-
78650580818
-
Error-prone translesion synthesis mediates acquired chemoresistance
-
Xie K., et al. Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:20792-20797.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 20792-20797
-
-
Xie, K.1
-
77
-
-
78650575542
-
Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy
-
Doles J., et al. Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:20786-20791.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 20786-20791
-
-
Doles, J.1
-
78
-
-
79952484614
-
Nanoparticle delivery systems in cancer vaccines
-
Krishnamachari Y., et al. Nanoparticle delivery systems in cancer vaccines. Pharm. Res. 2011, 28:215-236.
-
(2011)
Pharm. Res.
, vol.28
, pp. 215-236
-
-
Krishnamachari, Y.1
-
79
-
-
33745627657
-
Strategies for resolving patent disputes over nanoparticle drug delivery systems
-
Harris D.H., et al. Strategies for resolving patent disputes over nanoparticle drug delivery systems. Nanotechnol. Law Bus. 2004, 1:1-18.
-
(2004)
Nanotechnol. Law Bus.
, vol.1
, pp. 1-18
-
-
Harris, D.H.1
|