메뉴 건너뛰기




Volumn 15, Issue 2, 2015, Pages 363-410

Robust Computation of Linear Models by Convex Relaxation

Author keywords

Convex relaxation; Iteratively reweighted least squares; Robust linear models

Indexed keywords

COMPUTATION THEORY; CONVEX OPTIMIZATION; ITERATIVE METHODS; VECTORS;

EID: 84925537313     PISSN: 16153375     EISSN: 16153383     Source Type: Journal    
DOI: 10.1007/s10208-014-9221-0     Document Type: Article
Times cited : (149)

References (81)
  • 1
    • 21144461900 scopus 로고
    • Robust singular value decompositions: A new approach to projection pursuit
    • Ammann, L.P.: Robust singular value decompositions: A new approach to projection pursuit. J. Amer. Statist. Assoc. 88(422), 505–514 (1993). http://www.jstor.org/stable/2290330
    • (1993) J. Amer. Statist. Assoc , vol.88 , Issue.422 , pp. 505-514
    • Ammann, L.P.1
  • 2
    • 0027680635 scopus 로고
    • Orthogonal linear regression algorithm based on augmented matrix formulation. Comput. Oper. Res. 20
    • Bargiela, A., Hartley, J.K.: Orthogonal linear regression algorithm based on augmented matrix formulation. Comput. Oper. Res. 20, 829–836 (1993). doi:10.1016/0305-0548(93)90104-Q. http://dl.acm.org/citation.cfm?id=165819.165826
    • (1993) 829–836
    • Bargiela, A.1    Hartley, J.K.2
  • 5
    • 85067751209 scopus 로고    scopus 로고
    • Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia
    • Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA (1996)
    • (1996) PA
    • Björck, Å.1
  • 6
    • 0004124953 scopus 로고    scopus 로고
    • Gaussian Measures
    • American Mathematical Society, Providence, RI:
    • Bogachev, V.I.: Gaussian Measures, Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence, RI (1998)
    • (1998) Mathematical Surveys and Monographs , vol.62
    • Bogachev, V.I.1
  • 7
    • 0003455376 scopus 로고    scopus 로고
    • Perturbation Analysis of Optimization Problems. Springer Series in Operations Research
    • Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer (2000)
    • (2000) Springer
    • Bonnans, J.F.1    Shapiro, A.2
  • 8
    • 80051762104 scopus 로고    scopus 로고
    • Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1), 1–122 (2010)
    • Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1), 1–122 (2010). doi:10.1561/2200000016. http://www.nowpublishers.com/product.aspx?product=MAL&doi=2200000016
  • 9
    • 70349151310 scopus 로고    scopus 로고
    • Robust PCA and clustering in noisy mixtures
    • Society for Industrial and Applied Mathematics, Philadelphia, PA, USA:
    • Brubaker, S.C.: Robust PCA and clustering in noisy mixtures. In: Proc. 20th Ann. ACM-SIAM Symp. Discrete Algorithms, SODA ’09, pp. 1078–1087. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2009). http://portal.acm.org/citation.cfm?id=1496770.1496887
    • (2009) Proc. 20th Ann. ACM-SIAM Symp. Discrete Algorithms, SODA ’09 , pp. 1078-1087
    • Brubaker, S.C.1
  • 10
    • 85067770742 scopus 로고    scopus 로고
    • Caltech 101. Online (2006)
    • Caltech 101. Online (2006). http://www.vision.caltech.edu/Image_Datasets/Caltech101/
  • 12
    • 0026367158 scopus 로고
    • An iterative linear programming solution to the Euclidean regression model
    • Cavalier, T.M., Melloy, B.J.: An iterative linear programming solution to the Euclidean regression model. Comput. Oper. Res. 18, 655–661 (1991)
    • (1991) Comput. Oper. Res , vol.18 , pp. 655-661
    • Cavalier, T.M.1    Melloy, B.J.2
  • 13
    • 0000668458 scopus 로고    scopus 로고
    • On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM
    • Chan, T.F., Mulet, P.: On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM J. Numer. Anal. 36, 354–367 (1999). doi:10.1137/S0036142997327075
    • (1999) J. Numer. Anal , vol.36 , pp. 354-367
    • Chan, T.F.1    Mulet, P.2
  • 14
    • 79960591511 scopus 로고    scopus 로고
    • Rank-sparsity incoherence for matrix decomposition. SIAM
    • Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21(2), 572–596 (2011). doi:10.1137/090761793
    • (2011) J. Optim , vol.21 , Issue.2 , pp. 572-596
    • Chandrasekaran, V.1    Sanghavi, S.2    Parrilo, P.A.3    Willsky, A.S.4
  • 16
    • 0032154138 scopus 로고    scopus 로고
    • A multibody factorization method for independently moving objects
    • Costeira, J., Kanade, T.: A multibody factorization method for independently moving objects. Int. J. Comput. Vision 29(3), 159–179 (1998)
    • (1998) Int. J. Comput. Vision , vol.29 , Issue.3 , pp. 159-179
    • Costeira, J.1    Kanade, T.2
  • 17
    • 84877726395 scopus 로고    scopus 로고
    • On the sample complexity of robust pca
    • Coudron, M., Lerman, G.: On the sample complexity of robust pca. In: NIPS, pp. 3230–3238 (2012)
    • (2012) NIPS , pp. 3230-3238
    • Coudron, M.1    Lerman, G.2
  • 18
    • 34248577801 scopus 로고    scopus 로고
    • Algorithms for projection pursuit robust principal component analysis. Chemometrics Intell
    • Croux, C., Filzmoser, P., Oliveira, M.: Algorithms for projection pursuit robust principal component analysis. Chemometrics Intell. Lab. Sys. 87(2), 218–225 (2007)
    • (2007) Lab. Sys , vol.87 , Issue.2 , pp. 218-225
    • Croux, C.1    Filzmoser, P.2    Oliveira, M.3
  • 19
    • 0001088628 scopus 로고    scopus 로고
    • Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies
    • Croux, C., Haesbroeck, G.: Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies. Biometrika 87, 603–618 (2000)
    • (2000) Biometrika , vol.87 , pp. 603-618
    • Croux, C.1    Haesbroeck, G.2
  • 20
    • 0012070851 scopus 로고    scopus 로고
    • Local operator theory, random matrices and Banach spaces
    • North-Holland, Amsterdam:
    • Davidson, K.R., Szarek, S.J.: Local operator theory, random matrices and Banach spaces. In: Handbook of the geometry of Banach spaces, Vol. I, pp. 317–366. North-Holland, Amsterdam (2001). doi:10.1016/S1874-5849(01)80010-3
    • (2001) Handbook of the geometry of Banach spaces, Vol. I , pp. 317-366
    • Davidson, K.R.1    Szarek, S.J.2
  • 21
    • 28844506971 scopus 로고    scopus 로고
    • Addenda and corrigenda to: “Local operator theory, random matrices and Banach spaces” [in Handbook of the geometry of Banach spaces, Vol. I, 317–366, North-Holland, Amsterdam, 2001; MR1863696 (2004f:47002a)]
    • North-Holland, Amsterdam:
    • Davidson, K.R., Szarek, S.J.: Addenda and corrigenda to: “Local operator theory, random matrices and Banach spaces” [in Handbook of the geometry of Banach spaces, Vol. I, 317–366, North-Holland, Amsterdam, 2001; MR1863696 (2004f:47002a)]. In: Handbook of the geometry of Banach spaces, Vol. 2, pp. 1819–1820. North-Holland, Amsterdam (2003)
    • (2003) Handbook of the geometry of Banach spaces, Vol. 2 , pp. 1819-1820
    • Davidson, K.R.1    Szarek, S.J.2
  • 22
    • 0000789842 scopus 로고
    • Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices
    • Davies, P.L.: Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices. Ann. Statist. 15(3), 1269–1292 (1987). http://www.jstor.org/stable/2241828
    • (1987) Ann. Statist , vol.15 , Issue.3 , pp. 1269-1292
    • Davies, P.L.1
  • 24
    • 84950884569 scopus 로고
    • Robust estimation of dispersion matrices and principal components
    • Devlin, S.J., Gnandesikan, R., Kettenring, J.R.: Robust estimation of dispersion matrices and principal components. J. Amer. Statist. Assoc. 76(374), 354–362 (1981). http://www.jstor.org/stable/2287836
    • (1981) J. Amer. Statist. Assoc , vol.76 , Issue.374 , pp. 354-362
    • Devlin, S.J.1    Gnandesikan, R.2    Kettenring, J.R.3
  • 25
    • 34250776571 scopus 로고    scopus 로고
    • R1-PCA: Rotational invariant $$L_1$$L1-norm principal component analysis for robust subspace factorization
    • Association for Computing Machinery, Pittsburgh, PA:
    • Ding, C., Zhou, D., He, X., Zha, H.: R1-PCA: Rotational invariant $$L_1$$L1-norm principal component analysis for robust subspace factorization. In: ICML ’06: Proc. 23rd Int. Conf. Machine Learning, pp. 281–288. Association for Computing Machinery, Pittsburgh, PA (2006). doi:10.1145/1143844.1143880
    • (2006) ICML ’06: Proc. 23rd Int. Conf. Machine Learning , pp. 281-288
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 26
    • 38249034009 scopus 로고    scopus 로고
    • Dodge, Y.: An introduction to (Formula presented.)-norm based statistical data analysis. Comput. Statist. Data Anal. 5(4), 239–253 (1987)
    • Dodge, Y.: An introduction to $$l_1$$l1-norm based statistical data analysis. Comput. Statist. Data Anal. 5(4), 239–253 (1987). doi:10.1016/0167-9473(87)90048-X. http://www.sciencedirect.com/science/article/pii/016794738790048X
  • 27
    • 57849129611 scopus 로고
    • A principal axis transformation for non-hermitian matrices
    • Eckart, C., Young, G.: A principal axis transformation for non-hermitian matrices. Bull. Amer. Math. Soc. 45(2), 118–121 (1939)
    • (1939) Bull. Amer. Math. Soc , vol.45 , Issue.2 , pp. 118-121
    • Eckart, C.1    Young, G.2
  • 28
    • 0029222705 scopus 로고
    • Yuille, A.L.: $$5 \pm 2$$5±2 eigenimages suffice: An empirical investigation of low-dimensional lighting models
    • Epstein, R., Hallinan, P., Yuille, A.L.: $$5 \pm 2$$5±2 eigenimages suffice: An empirical investigation of low-dimensional lighting models. In: Physics-Based Modeling in Computer Vision, 1995, Proceedings of the Workshop on, p. 108 (1995). doi:10.1109/PBMCV.1995.514675
    • (1995) Physics-Based Modeling in Computer Vision, 1995, Proceedings of the Workshop on , pp. 108
    • Epstein, R.1    Hallinan, P.2
  • 29
    • 77955994778 scopus 로고    scopus 로고
    • Efficient computation of robust low-rank matrix approximations in the presence of missing data using the $$l_1$$l1 norm
    • Eriksson, A., van den Hengel, A.: Efficient computation of robust low-rank matrix approximations in the presence of missing data using the $$l_1$$l1 norm. In: Proc. 2010 IEEE Conf. Computer Vision and Pattern Recognition, pp. 771–778 (2010). doi:10.1109/CVPR.2010.5540139
    • (2010) Proc. 2010 IEEE Conf. Computer Vision and Pattern Recognition , pp. 771-778
    • Eriksson, A.1    van den Hengel, A.2
  • 30
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from a few training examples: an incremental bayesian approach tested on 101 object categories
    • Workshop on Generative-Model Based Vision, IEEE:
    • Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from a few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR 2004, Workshop on Generative-Model Based Vision. IEEE (2004)
    • (2004) CVPR , pp. 2004
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 31
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. Assoc. Comput. Mach. 24(6), 381–395 (1981)
    • (1981) Comm. Assoc. Comput. Mach , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.1    Bolles, R.2
  • 32
    • 84893574327 scopus 로고
    • Improved approximation for maximum cut and satisfiability problems using semidefinite programming
    • Goemans, M.X., Williamson, D.P.: Improved approximation for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42, 1115–1145 (1995)
    • (1995) J. Assoc. Comput. Mach , vol.42 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 33
    • 85148461695 scopus 로고    scopus 로고
    • Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: V. Blondel, S. Boyd, H. Kimura (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, London (2008)
    • Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: V. Blondel, S. Boyd, H. Kimura (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, London (2008). http://stanford.edu/~boyd/graph_dcp.html
  • 34
    • 85067776528 scopus 로고    scopus 로고
    • Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. (2010)
    • Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx (2010)
  • 35
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions
    • Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)
    • (2011) SIAM Rev , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.A.3
  • 36
    • 0000315057 scopus 로고
    • The method of least squares and some alternatives: Part I. I.t
    • Harter, H.L.: The method of least squares and some alternatives: Part I. Int. Statist. Rev. 42(2), 147–174 (1974)
    • (1974) Statist. Rev , vol.42 , Issue.2 , pp. 147-174
    • Harter, H.L.1
  • 37
    • 0008380992 scopus 로고
    • The method of least squares and some alternatives: Part II
    • Harter, H.L.: The method of least squares and some alternatives: Part II. Int. Statist. Rev. 42(3), 235–282 (1974)
    • (1974) Int. Statist. Rev , vol.42 , Issue.3 , pp. 235-282
    • Harter, H.L.1
  • 39
    • 84947791529 scopus 로고    scopus 로고
    • Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ:
    • Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ (2009). doi:10.1002/9780470434697
    • (2009) Robust Statistics
    • Huber, P.J.1    Ronchetti, E.M.2
  • 40
    • 85067764309 scopus 로고
    • Total Least Squares: Computational Aspects and Analysis. Society for Industrial and Applied Mathematics, Philadelphia
    • van Huffel, S., Vandewalle, J.: Total Least Squares: Computational Aspects and Analysis. Society for Industrial and Applied Mathematics, Philadelphia, PA (1987)
    • (1987) PA
    • van Huffel, S.1    Vandewalle, J.2
  • 42
    • 84966228652 scopus 로고
    • Some extensions of W. Gautschi’s inequalities for the gamma function
    • Kershaw, D.: Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comput. 41(164), pp. 607–611 (1983). http://www.jstor.org/stable/2007697
    • (1983) Math. Comput , vol.41 , Issue.164 , pp. 607-611
    • Kershaw, D.1
  • 43
    • 48049103479 scopus 로고    scopus 로고
    • Principal component analysis based on $$L_1$$L1-norm maximization
    • Kwak, N.: Principal component analysis based on $$L_1$$L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1672–1680 (2008). doi:10.1109/TPAMI.2008.114
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell , vol.30 , Issue.9 , pp. 1672-1680
    • Kwak, N.1
  • 45
    • 18144420071 scopus 로고    scopus 로고
    • Acquiring linear subspaces for face recognition under variable lighting
    • Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.5 , pp. 684-698
    • Lee, K.C.1    Ho, J.2    Kriegman, D.3
  • 46
    • 85067771668 scopus 로고    scopus 로고
    • Lerman, G., McCoy, M.B., Tropp, J.A., Zhang, T.: Robust computation of linear models, or how to find a needle in a haystack (2012)
    • Lerman, G., McCoy, M.B., Tropp, J.A., Zhang, T.: Robust computation of linear models, or how to find a needle in a haystack (2012). Available at arxiv:1202.4044v1
  • 48
    • 84867092906 scopus 로고    scopus 로고
    • Robust recovery of multiple subspaces by geometric $$\ell _p$$ℓp minimization
    • Lerman, G., Zhang, T.: Robust recovery of multiple subspaces by geometric $$\ell _p$$ℓp minimization. Ann. Statist. 39(5), 2686–2715 (2011)
    • (2011) Ann. Statist , vol.39 , Issue.5 , pp. 2686-2715
    • Lerman, G.1    Zhang, T.2
  • 49
    • 0001337027 scopus 로고
    • Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo
    • Li, G., Chen, Z.: Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo. J. Amer. Statist. Assoc. 80(391), 759–766 (1985). doi:10.2307/2288497
    • (1985) J. Amer. Statist. Assoc , vol.80 , Issue.391 , pp. 759-766
    • Li, G.1    Chen, Z.2
  • 50
    • 84870197517 scopus 로고    scopus 로고
    • Robust recovery of subspace structures by low-rank representation
    • Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013). doi:10.1109/TPAMI.2012.88
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.1 , pp. 171-184
    • Liu, G.1    Lin, Z.2    Yan, S.3    Sun, J.4    Yu, Y.5    Ma, Y.6
  • 51
    • 85067774572 scopus 로고    scopus 로고
    • Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L.: Robust principal component analysis for functional data. Test 8(1), 1–73 (1999).With discussion and a rejoinder by the authors
    • Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L.: Robust principal component analysis for functional data. Test 8(1), 1–73 (1999). doi:10.1007/BF02595862. With discussion and a rejoinder by the authors
  • 52
    • 85067750153 scopus 로고    scopus 로고
    • Lovasz, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)
    • Lovasz, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1(2), 166–190 (1991). doi:10.1137/0801013. http://link.aip.org/link/?SJE/1/166/1
  • 53
    • 23844486772 scopus 로고    scopus 로고
    • Principal components and orthogonal regression based on robust scales
    • Maronna, R.: Principal components and orthogonal regression based on robust scales. Technometrics 47(3), 264–273 (2005). doi:10.1198/004017005000000166
    • (2005) Technometrics , vol.47 , Issue.3 , pp. 264-273
    • Maronna, R.1
  • 54
    • 0002063041 scopus 로고
    • Robust M-estimators of multivariate location and scatter
    • Maronna, R.A.: Robust M-estimators of multivariate location and scatter. Ann. Statist. 4(1), 51–67 (1976). http://www.jstor.org/stable/2957994
    • (1976) Ann. Statist , vol.4 , Issue.1 , pp. 51-67
    • Maronna, R.A.1
  • 55
    • 84947338420 scopus 로고    scopus 로고
    • Maronna, R.A., Martin, D.R., Yohai, V.J.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley, Chichester (2006). Theory and methods
    • Maronna, R.A., Martin, D.R., Yohai, V.J.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley, Chichester (2006). doi:10.1002/0470010940. Theory and methods
  • 56
    • 84859831899 scopus 로고    scopus 로고
    • Two proposals for robust PCA using semidefinite programming
    • McCoy, M., Tropp, J.A.: Two proposals for robust PCA using semidefinite programming. Electron. J. Statist. 5, 1123–1160 (2011)
    • (2011) Electron. J. Statist , vol.5 , pp. 1123-1160
    • McCoy, M.1    Tropp, J.A.2
  • 57
    • 55549115654 scopus 로고    scopus 로고
    • Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A.R., Auton, A., Indap, A., King, K.S., Bergmann, S., Nelson, M., Stephens, M., Bustamante, C.D.: Genes mirror geography within Europe. Nature 456(7218), 98–101 (2008)
    • Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A.R., Auton, A., Indap, A., King, K.S., Bergmann, S., Nelson, M., Stephens, M., Bustamante, C.D.: Genes mirror geography within Europe. Nature 456(7218), 98–101 (2008). doi:10.1038/nature07331. http://www.ncbi.nlm.nih.gov/pubmed/18758442?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=8
  • 58
    • 38249032274 scopus 로고    scopus 로고
    • Nyquist, H.: Least orthogonal absolute deviations. Comput. Statist. Data Anal. 6(4), 361–367 (1988)
    • Nyquist, H.: Least orthogonal absolute deviations. Comput. Statist. Data Anal. 6(4), 361–367 (1988). doi:10.1016/0167-9473(88)90076-X. http://www.sciencedirect.com/science/article/pii/016794738890076X
  • 59
    • 85067769712 scopus 로고    scopus 로고
    • Osborne, M.R., Watson, G.A.: An analysis of the total approximation problem in separable norms, and an algorithm for the total (Formula presented.) problem. SIAM J. Sci. Statist. Comput. 6(2), 410–424 (1985)
    • Osborne, M.R., Watson, G.A.: An analysis of the total approximation problem in separable norms, and an algorithm for the total $$l_1 $$l1 problem. SIAM J. Sci. Statist. Comput. 6(2), 410–424 (1985). doi:10.1137/0906029. http://link.aip.org/link/?SCE/6/410/1
  • 60
    • 0039907084 scopus 로고
    • On the sum of the largest eigenvalues of a symmetric matrix. SIAM
    • Overton, M.L., Womersley, R.S.: On the sum of the largest eigenvalues of a symmetric matrix. SIAM J. Matrix Anal. Appl. 13(1), 41–45 (1992)
    • (1992) J. Matrix Anal. Appl , vol.13 , Issue.1 , pp. 41-45
    • Overton, M.L.1    Womersley, R.S.2
  • 61
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D.: Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38(8), 904–909 (2006). http://www.ncbi.nlm.nih.gov/pubmed/16862161
    • (2006) Nature Genetics , vol.38 , Issue.8 , pp. 904-909
    • Price, A.L.1    Patterson, N.J.2    Plenge, R.M.3    Weinblatt, M.E.4    Shadick, N.A.5    Reich, D.6
  • 62
    • 0003346020 scopus 로고
    • Convex analysis
    • Princeton University Press, Princeton, N.J:
    • Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970)
    • (1970) Princeton Mathematical Series , vol.28
    • Rockafellar, R.T.1
  • 63
    • 84950968334 scopus 로고
    • Least median of squares regression
    • Rousseeuw, P.J.: Least median of squares regression. J. Amer. Statist. Assoc. 79(388), 871–880 (1984)
    • (1984) J. Amer. Statist. Assoc , vol.79 , Issue.388 , pp. 871-880
    • Rousseeuw, P.J.1
  • 65
    • 0000341740 scopus 로고
    • On orthogonal linear approximation. Numer. Math. 51
    • Späth, H., Watson, G.A.: On orthogonal linear approximation. Numer. Math. 51, 531–543 (1987). doi:10.1007/BF01400354. http://dl.acm.org/citation.cfm?id=34311.34315
    • (1987) 531–543
    • Späth, H.1    Watson, G.A.2
  • 67
    • 0141742284 scopus 로고    scopus 로고
    • Torre, F.D.L., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vision 54, 117–142 (2003)
    • Torre, F.D.L., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vision 54, 117–142 (2003). doi:10.1023/A:1023709501986
  • 68
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: convex programming methods for identifying sparse signals in noise
    • Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52(3), 1030–1051 (2006). doi:10.1109/TIT.2005.864420
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.3 , pp. 1030-1051
    • Tropp, J.A.1
  • 69
    • 85067754382 scopus 로고    scopus 로고
    • Corrigendum in “just relax: Convex programming methods for identifying sparse signals in noise
    • Tropp, J.A.: Corrigendum in “just relax: Convex programming methods for identifying sparse signals in noise”. IEEE Trans. Inform. Theory 55(2) (2009)
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.2
    • Tropp, J.A.1
  • 71
    • 0008520850 scopus 로고
    • Linear convergence of generalized Weiszfeld’s method
    • Voss, H., Eckhardt, U.: Linear convergence of generalized Weiszfeld’s method. Computing 25, 243–251 (1980). doi:10.1007/BF02242002
    • (1980) Computing , vol.25 , pp. 243-251
    • Voss, H.1    Eckhardt, U.2
  • 72
    • 85071591797 scopus 로고    scopus 로고
    • Exact and stable recovery of rotations for robust synchronization
    • Wang, L., Singer, A.: Exact and stable recovery of rotations for robust synchronization. Information and Inference (2013). doi:10.1093/imaiai/iat005
    • (2013) Information and Inference
    • Wang, L.1    Singer, A.2
  • 73
    • 84897057455 scopus 로고    scopus 로고
    • Some problems in orthogonal distance and non-orthogonal distance regression
    • Symp. Algorithms for Approximation IV, Defense Technical Information Center:
    • Watson, G.A.: Some problems in orthogonal distance and non-orthogonal distance regression. In: Proc. 2001 Symp. Algorithms for Approximation IV. Defense Technical Information Center (2001). http://books.google.com/books?id=WKKWGwAACAAJ
    • (2001) Proc , pp. 2001
    • Watson, G.A.1
  • 74
    • 85120507739 scopus 로고    scopus 로고
    • Watson, G.A.: On the Gauss-Newton method for (Formula presented.) orthogonal distance regression. IMA J. Numer. Anal. 22(3), 345–357 (2002)
    • Watson, G.A.: On the Gauss-Newton method for $$l_1$$l1 orthogonal distance regression. IMA J. Numer. Anal. 22(3), 345–357 (2002). doi:10.1093/imanum/22.3.345. http://imajna.oxfordjournals.org/content/22/3/345.abstract
  • 75
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, D., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostat. 10(3), 515–534 (2009)
    • (2009) Biostat , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.1    Tibshirani, R.2    Hastie, T.3
  • 76
    • 84860606154 scopus 로고    scopus 로고
    • Principal Component Analysis with Contaminated Data: The High Dimensional Case
    • Conf. Learning Theory. OmniPress, Haifa:
    • Xu, H., Caramanis, C., Mannor, S.: Principal Component Analysis with Contaminated Data: The High Dimensional Case. In: Proc. 2010 Conf. Learning Theory. OmniPress, Haifa (2010)
    • (2010) Proc , pp. 2010
    • Xu, H.1    Caramanis, C.2    Mannor, S.3
  • 79
    • 0029184173 scopus 로고
    • Robust principal component analysis by self-organizing rules based on statistical physics approach
    • Xu, L., Yuille, A.L.: Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Trans. Neural Networks 6(1), 131–143 (1995). doi:10.1109/72.363442
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 131-143
    • Xu, L.1    Yuille, A.L.2
  • 80
    • 0029184173 scopus 로고
    • Robust principal component analysis by self-organizing rules based on statistical physics approach
    • Xu, L., Yuille, A.L.: Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Trans. Neural Networks 6(1), 131–143 (1995). doi:10.1109/72.363442
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 131-143
    • Xu, L.1    Yuille, A.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.