-
1
-
-
21144461900
-
Robust singular value decompositions: A new approach to projection pursuit
-
Ammann, L.P.: Robust singular value decompositions: A new approach to projection pursuit. J. Amer. Statist. Assoc. 88(422), 505–514 (1993). http://www.jstor.org/stable/2290330
-
(1993)
J. Amer. Statist. Assoc
, vol.88
, Issue.422
, pp. 505-514
-
-
Ammann, L.P.1
-
2
-
-
0027680635
-
Orthogonal linear regression algorithm based on augmented matrix formulation. Comput. Oper. Res. 20
-
Bargiela, A., Hartley, J.K.: Orthogonal linear regression algorithm based on augmented matrix formulation. Comput. Oper. Res. 20, 829–836 (1993). doi:10.1016/0305-0548(93)90104-Q. http://dl.acm.org/citation.cfm?id=165819.165826
-
(1993)
829–836
-
-
Bargiela, A.1
Hartley, J.K.2
-
5
-
-
85067751209
-
Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia
-
Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA (1996)
-
(1996)
PA
-
-
Björck, Å.1
-
6
-
-
0004124953
-
Gaussian Measures
-
American Mathematical Society, Providence, RI:
-
Bogachev, V.I.: Gaussian Measures, Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence, RI (1998)
-
(1998)
Mathematical Surveys and Monographs
, vol.62
-
-
Bogachev, V.I.1
-
7
-
-
0003455376
-
Perturbation Analysis of Optimization Problems. Springer Series in Operations Research
-
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer (2000)
-
(2000)
Springer
-
-
Bonnans, J.F.1
Shapiro, A.2
-
8
-
-
80051762104
-
-
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1), 1–122 (2010)
-
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1), 1–122 (2010). doi:10.1561/2200000016. http://www.nowpublishers.com/product.aspx?product=MAL&doi=2200000016
-
-
-
-
9
-
-
70349151310
-
Robust PCA and clustering in noisy mixtures
-
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA:
-
Brubaker, S.C.: Robust PCA and clustering in noisy mixtures. In: Proc. 20th Ann. ACM-SIAM Symp. Discrete Algorithms, SODA ’09, pp. 1078–1087. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2009). http://portal.acm.org/citation.cfm?id=1496770.1496887
-
(2009)
Proc. 20th Ann. ACM-SIAM Symp. Discrete Algorithms, SODA ’09
, pp. 1078-1087
-
-
Brubaker, S.C.1
-
10
-
-
85067770742
-
-
Caltech 101. Online (2006)
-
Caltech 101. Online (2006). http://www.vision.caltech.edu/Image_Datasets/Caltech101/
-
-
-
-
11
-
-
79960675858
-
Robust principal component analysis
-
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. Assoc. Comput. Mach. 58(3) (2011)
-
(2011)
J. Assoc. Comput. Mach
, vol.58
, Issue.3
-
-
Candès, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
12
-
-
0026367158
-
An iterative linear programming solution to the Euclidean regression model
-
Cavalier, T.M., Melloy, B.J.: An iterative linear programming solution to the Euclidean regression model. Comput. Oper. Res. 18, 655–661 (1991)
-
(1991)
Comput. Oper. Res
, vol.18
, pp. 655-661
-
-
Cavalier, T.M.1
Melloy, B.J.2
-
13
-
-
0000668458
-
On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM
-
Chan, T.F., Mulet, P.: On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM J. Numer. Anal. 36, 354–367 (1999). doi:10.1137/S0036142997327075
-
(1999)
J. Numer. Anal
, vol.36
, pp. 354-367
-
-
Chan, T.F.1
Mulet, P.2
-
14
-
-
79960591511
-
Rank-sparsity incoherence for matrix decomposition. SIAM
-
Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21(2), 572–596 (2011). doi:10.1137/090761793
-
(2011)
J. Optim
, vol.21
, Issue.2
, pp. 572-596
-
-
Chandrasekaran, V.1
Sanghavi, S.2
Parrilo, P.A.3
Willsky, A.S.4
-
16
-
-
0032154138
-
A multibody factorization method for independently moving objects
-
Costeira, J., Kanade, T.: A multibody factorization method for independently moving objects. Int. J. Comput. Vision 29(3), 159–179 (1998)
-
(1998)
Int. J. Comput. Vision
, vol.29
, Issue.3
, pp. 159-179
-
-
Costeira, J.1
Kanade, T.2
-
17
-
-
84877726395
-
On the sample complexity of robust pca
-
Coudron, M., Lerman, G.: On the sample complexity of robust pca. In: NIPS, pp. 3230–3238 (2012)
-
(2012)
NIPS
, pp. 3230-3238
-
-
Coudron, M.1
Lerman, G.2
-
18
-
-
34248577801
-
Algorithms for projection pursuit robust principal component analysis. Chemometrics Intell
-
Croux, C., Filzmoser, P., Oliveira, M.: Algorithms for projection pursuit robust principal component analysis. Chemometrics Intell. Lab. Sys. 87(2), 218–225 (2007)
-
(2007)
Lab. Sys
, vol.87
, Issue.2
, pp. 218-225
-
-
Croux, C.1
Filzmoser, P.2
Oliveira, M.3
-
19
-
-
0001088628
-
Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies
-
Croux, C., Haesbroeck, G.: Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies. Biometrika 87, 603–618 (2000)
-
(2000)
Biometrika
, vol.87
, pp. 603-618
-
-
Croux, C.1
Haesbroeck, G.2
-
20
-
-
0012070851
-
Local operator theory, random matrices and Banach spaces
-
North-Holland, Amsterdam:
-
Davidson, K.R., Szarek, S.J.: Local operator theory, random matrices and Banach spaces. In: Handbook of the geometry of Banach spaces, Vol. I, pp. 317–366. North-Holland, Amsterdam (2001). doi:10.1016/S1874-5849(01)80010-3
-
(2001)
Handbook of the geometry of Banach spaces, Vol. I
, pp. 317-366
-
-
Davidson, K.R.1
Szarek, S.J.2
-
21
-
-
28844506971
-
Addenda and corrigenda to: “Local operator theory, random matrices and Banach spaces” [in Handbook of the geometry of Banach spaces, Vol. I, 317–366, North-Holland, Amsterdam, 2001; MR1863696 (2004f:47002a)]
-
North-Holland, Amsterdam:
-
Davidson, K.R., Szarek, S.J.: Addenda and corrigenda to: “Local operator theory, random matrices and Banach spaces” [in Handbook of the geometry of Banach spaces, Vol. I, 317–366, North-Holland, Amsterdam, 2001; MR1863696 (2004f:47002a)]. In: Handbook of the geometry of Banach spaces, Vol. 2, pp. 1819–1820. North-Holland, Amsterdam (2003)
-
(2003)
Handbook of the geometry of Banach spaces, Vol. 2
, pp. 1819-1820
-
-
Davidson, K.R.1
Szarek, S.J.2
-
22
-
-
0000789842
-
Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices
-
Davies, P.L.: Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices. Ann. Statist. 15(3), 1269–1292 (1987). http://www.jstor.org/stable/2241828
-
(1987)
Ann. Statist
, vol.15
, Issue.3
, pp. 1269-1292
-
-
Davies, P.L.1
-
23
-
-
0345120094
-
Improving Information Retrieval with Latent Semantic Indexing
-
Learned Information Inc, Atlanta, Georgia:
-
Deerwester, S., Dumais, S., Landauer, T., Furna, G., Beck, L.: Improving Information Retrieval with Latent Semantic Indexing. In: C.L. Borgman, E.Y.H. Pai (eds.) Information & Technology Planning for the Second 50 Years Proceedings of the 51st Annual Meeting of the American Society for Information Science, vol. 25. Learned Information Inc, Atlanta, Georgia (1988)
-
(1988)
Information & Technology Planning for the Second 50 Years Proceedings of the 51st Annual Meeting of the American Society for Information Science, vol
, pp. 25
-
-
Deerwester, S.1
Dumais, S.2
Landauer, T.3
Furna, G.4
Beck, L.5
Borgman, C.L.6
Pai, E.Y.H.7
-
24
-
-
84950884569
-
Robust estimation of dispersion matrices and principal components
-
Devlin, S.J., Gnandesikan, R., Kettenring, J.R.: Robust estimation of dispersion matrices and principal components. J. Amer. Statist. Assoc. 76(374), 354–362 (1981). http://www.jstor.org/stable/2287836
-
(1981)
J. Amer. Statist. Assoc
, vol.76
, Issue.374
, pp. 354-362
-
-
Devlin, S.J.1
Gnandesikan, R.2
Kettenring, J.R.3
-
25
-
-
34250776571
-
R1-PCA: Rotational invariant $$L_1$$L1-norm principal component analysis for robust subspace factorization
-
Association for Computing Machinery, Pittsburgh, PA:
-
Ding, C., Zhou, D., He, X., Zha, H.: R1-PCA: Rotational invariant $$L_1$$L1-norm principal component analysis for robust subspace factorization. In: ICML ’06: Proc. 23rd Int. Conf. Machine Learning, pp. 281–288. Association for Computing Machinery, Pittsburgh, PA (2006). doi:10.1145/1143844.1143880
-
(2006)
ICML ’06: Proc. 23rd Int. Conf. Machine Learning
, pp. 281-288
-
-
Ding, C.1
Zhou, D.2
He, X.3
Zha, H.4
-
26
-
-
38249034009
-
-
Dodge, Y.: An introduction to (Formula presented.)-norm based statistical data analysis. Comput. Statist. Data Anal. 5(4), 239–253 (1987)
-
Dodge, Y.: An introduction to $$l_1$$l1-norm based statistical data analysis. Comput. Statist. Data Anal. 5(4), 239–253 (1987). doi:10.1016/0167-9473(87)90048-X. http://www.sciencedirect.com/science/article/pii/016794738790048X
-
-
-
-
27
-
-
57849129611
-
A principal axis transformation for non-hermitian matrices
-
Eckart, C., Young, G.: A principal axis transformation for non-hermitian matrices. Bull. Amer. Math. Soc. 45(2), 118–121 (1939)
-
(1939)
Bull. Amer. Math. Soc
, vol.45
, Issue.2
, pp. 118-121
-
-
Eckart, C.1
Young, G.2
-
28
-
-
0029222705
-
Yuille, A.L.: $$5 \pm 2$$5±2 eigenimages suffice: An empirical investigation of low-dimensional lighting models
-
Epstein, R., Hallinan, P., Yuille, A.L.: $$5 \pm 2$$5±2 eigenimages suffice: An empirical investigation of low-dimensional lighting models. In: Physics-Based Modeling in Computer Vision, 1995, Proceedings of the Workshop on, p. 108 (1995). doi:10.1109/PBMCV.1995.514675
-
(1995)
Physics-Based Modeling in Computer Vision, 1995, Proceedings of the Workshop on
, pp. 108
-
-
Epstein, R.1
Hallinan, P.2
-
29
-
-
77955994778
-
Efficient computation of robust low-rank matrix approximations in the presence of missing data using the $$l_1$$l1 norm
-
Eriksson, A., van den Hengel, A.: Efficient computation of robust low-rank matrix approximations in the presence of missing data using the $$l_1$$l1 norm. In: Proc. 2010 IEEE Conf. Computer Vision and Pattern Recognition, pp. 771–778 (2010). doi:10.1109/CVPR.2010.5540139
-
(2010)
Proc. 2010 IEEE Conf. Computer Vision and Pattern Recognition
, pp. 771-778
-
-
Eriksson, A.1
van den Hengel, A.2
-
30
-
-
84932617705
-
Learning generative visual models from a few training examples: an incremental bayesian approach tested on 101 object categories
-
Workshop on Generative-Model Based Vision, IEEE:
-
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from a few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR 2004, Workshop on Generative-Model Based Vision. IEEE (2004)
-
(2004)
CVPR
, pp. 2004
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
31
-
-
0019574599
-
Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
-
Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. Assoc. Comput. Mach. 24(6), 381–395 (1981)
-
(1981)
Comm. Assoc. Comput. Mach
, vol.24
, Issue.6
, pp. 381-395
-
-
Fischler, M.1
Bolles, R.2
-
32
-
-
84893574327
-
Improved approximation for maximum cut and satisfiability problems using semidefinite programming
-
Goemans, M.X., Williamson, D.P.: Improved approximation for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42, 1115–1145 (1995)
-
(1995)
J. Assoc. Comput. Mach
, vol.42
, pp. 1115-1145
-
-
Goemans, M.X.1
Williamson, D.P.2
-
33
-
-
85148461695
-
-
Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: V. Blondel, S. Boyd, H. Kimura (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, London (2008)
-
Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: V. Blondel, S. Boyd, H. Kimura (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, London (2008). http://stanford.edu/~boyd/graph_dcp.html
-
-
-
-
34
-
-
85067776528
-
-
Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. (2010)
-
Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx (2010)
-
-
-
-
35
-
-
79960425522
-
Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions
-
Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)
-
(2011)
SIAM Rev
, vol.53
, Issue.2
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.A.3
-
36
-
-
0000315057
-
The method of least squares and some alternatives: Part I. I.t
-
Harter, H.L.: The method of least squares and some alternatives: Part I. Int. Statist. Rev. 42(2), 147–174 (1974)
-
(1974)
Statist. Rev
, vol.42
, Issue.2
, pp. 147-174
-
-
Harter, H.L.1
-
37
-
-
0008380992
-
The method of least squares and some alternatives: Part II
-
Harter, H.L.: The method of least squares and some alternatives: Part II. Int. Statist. Rev. 42(3), 235–282 (1974)
-
(1974)
Int. Statist. Rev
, vol.42
, Issue.3
, pp. 235-282
-
-
Harter, H.L.1
-
38
-
-
0042440805
-
Clustering appearances of objects under varying illumination conditions
-
Ho, J., Yang, M., Lim, J., Lee, K., Kriegman, D.: Clustering appearances of objects under varying illumination conditions. In: Proc. 2003 IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 11–18 (2003)
-
(2003)
Proc. 2003 IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 1
, pp. 11-18
-
-
Ho, J.1
Yang, M.2
Lim, J.3
Lee, K.4
Kriegman, D.5
-
39
-
-
84947791529
-
-
Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ:
-
Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ (2009). doi:10.1002/9780470434697
-
(2009)
Robust Statistics
-
-
Huber, P.J.1
Ronchetti, E.M.2
-
40
-
-
85067764309
-
Total Least Squares: Computational Aspects and Analysis. Society for Industrial and Applied Mathematics, Philadelphia
-
van Huffel, S., Vandewalle, J.: Total Least Squares: Computational Aspects and Analysis. Society for Industrial and Applied Mathematics, Philadelphia, PA (1987)
-
(1987)
PA
-
-
van Huffel, S.1
Vandewalle, J.2
-
42
-
-
84966228652
-
Some extensions of W. Gautschi’s inequalities for the gamma function
-
Kershaw, D.: Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comput. 41(164), pp. 607–611 (1983). http://www.jstor.org/stable/2007697
-
(1983)
Math. Comput
, vol.41
, Issue.164
, pp. 607-611
-
-
Kershaw, D.1
-
43
-
-
48049103479
-
Principal component analysis based on $$L_1$$L1-norm maximization
-
Kwak, N.: Principal component analysis based on $$L_1$$L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1672–1680 (2008). doi:10.1109/TPAMI.2008.114
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.30
, Issue.9
, pp. 1672-1680
-
-
Kwak, N.1
-
44
-
-
0003771756
-
-
Springer, Berlin, Isoperimetry and processes:
-
Ledoux, M., Talagrand, M.: Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23. Springer, Berlin (1991). Isoperimetry and processes
-
(1991)
Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]
, vol.23
-
-
Ledoux, M.1
Talagrand, M.2
-
45
-
-
18144420071
-
Acquiring linear subspaces for face recognition under variable lighting
-
Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.27
, Issue.5
, pp. 684-698
-
-
Lee, K.C.1
Ho, J.2
Kriegman, D.3
-
46
-
-
85067771668
-
-
Lerman, G., McCoy, M.B., Tropp, J.A., Zhang, T.: Robust computation of linear models, or how to find a needle in a haystack (2012)
-
Lerman, G., McCoy, M.B., Tropp, J.A., Zhang, T.: Robust computation of linear models, or how to find a needle in a haystack (2012). Available at arxiv:1202.4044v1
-
-
-
-
48
-
-
84867092906
-
Robust recovery of multiple subspaces by geometric $$\ell _p$$ℓp minimization
-
Lerman, G., Zhang, T.: Robust recovery of multiple subspaces by geometric $$\ell _p$$ℓp minimization. Ann. Statist. 39(5), 2686–2715 (2011)
-
(2011)
Ann. Statist
, vol.39
, Issue.5
, pp. 2686-2715
-
-
Lerman, G.1
Zhang, T.2
-
49
-
-
0001337027
-
Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo
-
Li, G., Chen, Z.: Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo. J. Amer. Statist. Assoc. 80(391), 759–766 (1985). doi:10.2307/2288497
-
(1985)
J. Amer. Statist. Assoc
, vol.80
, Issue.391
, pp. 759-766
-
-
Li, G.1
Chen, Z.2
-
50
-
-
84870197517
-
Robust recovery of subspace structures by low-rank representation
-
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013). doi:10.1109/TPAMI.2012.88
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.1
, pp. 171-184
-
-
Liu, G.1
Lin, Z.2
Yan, S.3
Sun, J.4
Yu, Y.5
Ma, Y.6
-
51
-
-
85067774572
-
-
Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L.: Robust principal component analysis for functional data. Test 8(1), 1–73 (1999).With discussion and a rejoinder by the authors
-
Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L.: Robust principal component analysis for functional data. Test 8(1), 1–73 (1999). doi:10.1007/BF02595862. With discussion and a rejoinder by the authors
-
-
-
-
52
-
-
85067750153
-
-
Lovasz, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)
-
Lovasz, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1(2), 166–190 (1991). doi:10.1137/0801013. http://link.aip.org/link/?SJE/1/166/1
-
-
-
-
53
-
-
23844486772
-
Principal components and orthogonal regression based on robust scales
-
Maronna, R.: Principal components and orthogonal regression based on robust scales. Technometrics 47(3), 264–273 (2005). doi:10.1198/004017005000000166
-
(2005)
Technometrics
, vol.47
, Issue.3
, pp. 264-273
-
-
Maronna, R.1
-
54
-
-
0002063041
-
Robust M-estimators of multivariate location and scatter
-
Maronna, R.A.: Robust M-estimators of multivariate location and scatter. Ann. Statist. 4(1), 51–67 (1976). http://www.jstor.org/stable/2957994
-
(1976)
Ann. Statist
, vol.4
, Issue.1
, pp. 51-67
-
-
Maronna, R.A.1
-
55
-
-
84947338420
-
-
Maronna, R.A., Martin, D.R., Yohai, V.J.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley, Chichester (2006). Theory and methods
-
Maronna, R.A., Martin, D.R., Yohai, V.J.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley, Chichester (2006). doi:10.1002/0470010940. Theory and methods
-
-
-
-
56
-
-
84859831899
-
Two proposals for robust PCA using semidefinite programming
-
McCoy, M., Tropp, J.A.: Two proposals for robust PCA using semidefinite programming. Electron. J. Statist. 5, 1123–1160 (2011)
-
(2011)
Electron. J. Statist
, vol.5
, pp. 1123-1160
-
-
McCoy, M.1
Tropp, J.A.2
-
57
-
-
55549115654
-
-
Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A.R., Auton, A., Indap, A., King, K.S., Bergmann, S., Nelson, M., Stephens, M., Bustamante, C.D.: Genes mirror geography within Europe. Nature 456(7218), 98–101 (2008)
-
Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A.R., Auton, A., Indap, A., King, K.S., Bergmann, S., Nelson, M., Stephens, M., Bustamante, C.D.: Genes mirror geography within Europe. Nature 456(7218), 98–101 (2008). doi:10.1038/nature07331. http://www.ncbi.nlm.nih.gov/pubmed/18758442?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=8
-
-
-
-
58
-
-
38249032274
-
-
Nyquist, H.: Least orthogonal absolute deviations. Comput. Statist. Data Anal. 6(4), 361–367 (1988)
-
Nyquist, H.: Least orthogonal absolute deviations. Comput. Statist. Data Anal. 6(4), 361–367 (1988). doi:10.1016/0167-9473(88)90076-X. http://www.sciencedirect.com/science/article/pii/016794738890076X
-
-
-
-
59
-
-
85067769712
-
-
Osborne, M.R., Watson, G.A.: An analysis of the total approximation problem in separable norms, and an algorithm for the total (Formula presented.) problem. SIAM J. Sci. Statist. Comput. 6(2), 410–424 (1985)
-
Osborne, M.R., Watson, G.A.: An analysis of the total approximation problem in separable norms, and an algorithm for the total $$l_1 $$l1 problem. SIAM J. Sci. Statist. Comput. 6(2), 410–424 (1985). doi:10.1137/0906029. http://link.aip.org/link/?SCE/6/410/1
-
-
-
-
60
-
-
0039907084
-
On the sum of the largest eigenvalues of a symmetric matrix. SIAM
-
Overton, M.L., Womersley, R.S.: On the sum of the largest eigenvalues of a symmetric matrix. SIAM J. Matrix Anal. Appl. 13(1), 41–45 (1992)
-
(1992)
J. Matrix Anal. Appl
, vol.13
, Issue.1
, pp. 41-45
-
-
Overton, M.L.1
Womersley, R.S.2
-
61
-
-
33746512512
-
Principal components analysis corrects for stratification in genome-wide association studies
-
Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D.: Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38(8), 904–909 (2006). http://www.ncbi.nlm.nih.gov/pubmed/16862161
-
(2006)
Nature Genetics
, vol.38
, Issue.8
, pp. 904-909
-
-
Price, A.L.1
Patterson, N.J.2
Plenge, R.M.3
Weinblatt, M.E.4
Shadick, N.A.5
Reich, D.6
-
62
-
-
0003346020
-
Convex analysis
-
Princeton University Press, Princeton, N.J:
-
Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970)
-
(1970)
Princeton Mathematical Series
, vol.28
-
-
Rockafellar, R.T.1
-
63
-
-
84950968334
-
Least median of squares regression
-
Rousseeuw, P.J.: Least median of squares regression. J. Amer. Statist. Assoc. 79(388), 871–880 (1984)
-
(1984)
J. Amer. Statist. Assoc
, vol.79
, Issue.388
, pp. 871-880
-
-
Rousseeuw, P.J.1
-
65
-
-
0000341740
-
On orthogonal linear approximation. Numer. Math. 51
-
Späth, H., Watson, G.A.: On orthogonal linear approximation. Numer. Math. 51, 531–543 (1987). doi:10.1007/BF01400354. http://dl.acm.org/citation.cfm?id=34311.34315
-
(1987)
531–543
-
-
Späth, H.1
Watson, G.A.2
-
66
-
-
0034849799
-
Robust principal component analysis for computer vision
-
Torre, F.D.L., Black, M.J.: Robust principal component analysis for computer vision. In: Proc. 8th IEEE Conf. Computer Vision, vol. 1, pp. 362–369 vol. 1 (2001). doi:10.1109/ICCV.2001.937541
-
(2001)
Proc. 8th IEEE Conf. Computer Vision, vol. 1, pp. 362–369 vol
, pp. 1
-
-
Torre, F.D.L.1
Black, M.J.2
-
67
-
-
0141742284
-
-
Torre, F.D.L., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vision 54, 117–142 (2003)
-
Torre, F.D.L., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vision 54, 117–142 (2003). doi:10.1023/A:1023709501986
-
-
-
-
68
-
-
33645712308
-
Just relax: convex programming methods for identifying sparse signals in noise
-
Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52(3), 1030–1051 (2006). doi:10.1109/TIT.2005.864420
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.3
, pp. 1030-1051
-
-
Tropp, J.A.1
-
69
-
-
85067754382
-
Corrigendum in “just relax: Convex programming methods for identifying sparse signals in noise
-
Tropp, J.A.: Corrigendum in “just relax: Convex programming methods for identifying sparse signals in noise”. IEEE Trans. Inform. Theory 55(2) (2009)
-
(2009)
IEEE Trans. Inform. Theory
, vol.55
, Issue.2
-
-
Tropp, J.A.1
-
71
-
-
0008520850
-
Linear convergence of generalized Weiszfeld’s method
-
Voss, H., Eckhardt, U.: Linear convergence of generalized Weiszfeld’s method. Computing 25, 243–251 (1980). doi:10.1007/BF02242002
-
(1980)
Computing
, vol.25
, pp. 243-251
-
-
Voss, H.1
Eckhardt, U.2
-
72
-
-
85071591797
-
Exact and stable recovery of rotations for robust synchronization
-
Wang, L., Singer, A.: Exact and stable recovery of rotations for robust synchronization. Information and Inference (2013). doi:10.1093/imaiai/iat005
-
(2013)
Information and Inference
-
-
Wang, L.1
Singer, A.2
-
73
-
-
84897057455
-
Some problems in orthogonal distance and non-orthogonal distance regression
-
Symp. Algorithms for Approximation IV, Defense Technical Information Center:
-
Watson, G.A.: Some problems in orthogonal distance and non-orthogonal distance regression. In: Proc. 2001 Symp. Algorithms for Approximation IV. Defense Technical Information Center (2001). http://books.google.com/books?id=WKKWGwAACAAJ
-
(2001)
Proc
, pp. 2001
-
-
Watson, G.A.1
-
74
-
-
85120507739
-
-
Watson, G.A.: On the Gauss-Newton method for (Formula presented.) orthogonal distance regression. IMA J. Numer. Anal. 22(3), 345–357 (2002)
-
Watson, G.A.: On the Gauss-Newton method for $$l_1$$l1 orthogonal distance regression. IMA J. Numer. Anal. 22(3), 345–357 (2002). doi:10.1093/imanum/22.3.345. http://imajna.oxfordjournals.org/content/22/3/345.abstract
-
-
-
-
75
-
-
70149096300
-
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
-
Witten, D., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostat. 10(3), 515–534 (2009)
-
(2009)
Biostat
, vol.10
, Issue.3
, pp. 515-534
-
-
Witten, D.1
Tibshirani, R.2
Hastie, T.3
-
76
-
-
84860606154
-
Principal Component Analysis with Contaminated Data: The High Dimensional Case
-
Conf. Learning Theory. OmniPress, Haifa:
-
Xu, H., Caramanis, C., Mannor, S.: Principal Component Analysis with Contaminated Data: The High Dimensional Case. In: Proc. 2010 Conf. Learning Theory. OmniPress, Haifa (2010)
-
(2010)
Proc
, pp. 2010
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
77
-
-
85162008777
-
Robust PCA via outlier pursuit
-
MIT Press, Vancouver:
-
Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. In: J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta (eds.) Neural Information Processing Systems 23, pp. 2496–2504. MIT Press, Vancouver (2010)
-
(2010)
Neural Information Processing Systems 23
, pp. 2496-2504
-
-
Xu, H.1
Caramanis, C.2
Sanghavi, S.3
Lafferty, J.4
Williams, C.K.I.5
Shawe-Taylor, J.6
Zemel, R.7
Culotta, A.8
-
78
-
-
84860244942
-
Robust PCA via outlier pursuit
-
Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. IEEE Trans. Inform. Theory 58(5), 3047–3064 (2012)
-
(2012)
IEEE Trans. Inform. Theory
, vol.58
, Issue.5
, pp. 3047-3064
-
-
Xu, H.1
Caramanis, C.2
Sanghavi, S.3
-
79
-
-
0029184173
-
Robust principal component analysis by self-organizing rules based on statistical physics approach
-
Xu, L., Yuille, A.L.: Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Trans. Neural Networks 6(1), 131–143 (1995). doi:10.1109/72.363442
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, Issue.1
, pp. 131-143
-
-
Xu, L.1
Yuille, A.L.2
-
80
-
-
0029184173
-
Robust principal component analysis by self-organizing rules based on statistical physics approach
-
Xu, L., Yuille, A.L.: Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Trans. Neural Networks 6(1), 131–143 (1995). doi:10.1109/72.363442
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, Issue.1
, pp. 131-143
-
-
Xu, L.1
Yuille, A.L.2
-
81
-
-
77953223144
-
Median $$K$$K-flats for hybrid linear modeling with many outliers
-
Zhang, T., Szlam, A., Lerman, G.: Median $$K$$K-flats for hybrid linear modeling with many outliers. In: Proc. 12th IEEE Int. Conf. Computer Vision, pp. 234–241. Kyoto (2009). doi:10.1109/ICCVW.2009.5457695
-
(2009)
Proc. 12th IEEE Int. Conf. Computer Vision, pp. 234–241. Kyoto
-
-
Zhang, T.1
Szlam, A.2
Lerman, G.3
|