-
1
-
-
36149030663
-
Analysis of total variation penalty methods for ill-posed problems
-
R. ACAR AND C. R. VOGEL, Analysis of total variation penalty methods for ill-posed problems, Inverse Prob., 10 (1994), pp. 1217-1229.
-
(1994)
Inverse Prob.
, vol.10
, pp. 1217-1229
-
-
Acar, R.1
Vogel, C.R.2
-
2
-
-
0039336857
-
Deterministic Edge-Preserving Regularization in Computed Imaging
-
Informatique, Signaux et Systèmes de Sophia Antipolis, France
-
G. AUBERT, M. BARLAUD, L. BLANC-FÉRAUD, AND P. CHARBONNIER, Deterministic Edge-Preserving Regularization in Computed Imaging, Technical report 94-01, Informatique, Signaux et Systèmes de Sophia Antipolis, France, 1994.
-
(1994)
Technical Report 94-01
-
-
Aubert, G.1
Barlaud, M.2
Blanc-Féraud, L.3
Charbonnier, P.4
-
3
-
-
0043078276
-
-
Technical report, UCLA Cam report 97-42, Department of Mathematics, UCLA, Los Angeles, CA, September
-
P. BLOMGREN, T. F. CHAN, AND P. MULET, Extensions to Total Variation Denoising, Technical report, UCLA Cam report 97-42, Department of Mathematics, UCLA, Los Angeles, CA, September 1997.
-
(1997)
Extensions to Total Variation Denoising
-
-
Blomgren, P.1
Chan, T.F.2
Mulet, P.3
-
4
-
-
0031492191
-
Image recovery via total variation minimization and related problems
-
A. CHAMBOLLE AND P.-L. LIONS, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), pp. 167-188.
-
(1997)
Numer. Math
, vol.76
, pp. 167-188
-
-
Chambolle, A.1
Lions, P.-L.2
-
5
-
-
84946564183
-
Continuation method for total variation denoising problems
-
F. T. Luk, ed., SPIE-The International Society for Optical Engrg. Proceedings 2563, SPIE, Washington, DC
-
R. H. CHAN, T. F. CHAN, AND H. M. ZHOU, Continuation method for total variation denoising problems, in Advanced Signal Processing Algorithms, F. T. Luk, ed., SPIE-The International Society for Optical Engrg. Proceedings 2563, 1995, SPIE, Washington, DC, pp. 314-325.
-
(1995)
Advanced Signal Processing Algorithms
, pp. 314-325
-
-
Chan, R.H.1
Chan, T.F.2
Zhou, H.M.3
-
6
-
-
0005352194
-
A nonlinear primal-dual method for Total Variation-based image restoration
-
ICAOS '96, 12th Intl. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's, M. O. Berger, R. Deriche, I. Herlin, J. Jaffre, and J. M. Morel, eds., Springer-Verlag, New York
-
T. F. CHAN, G. H. GOLUB, AND P. MULET, A nonlinear primal-dual method for Total Variation-based image restoration, in ICAOS '96, 12th Intl. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's, Lecture Notes in Control and Inform. Sci. 219, M. O. Berger, R. Deriche, I. Herlin, J. Jaffre, and J. M. Morel, eds., Springer-Verlag, New York, 1996, pp. 241-252.
-
(1996)
Lecture Notes in Control and Inform. Sci.
, vol.219
, pp. 241-252
-
-
Chan, T.F.1
Golub, G.H.2
Mulet, P.3
-
7
-
-
0000427927
-
Convergence of an iterative method for total variation denoising
-
D. C. DOBSON AND C. R. VOGEL, Convergence of an iterative method for total variation denoising, SIAM J. Numer. Anal., 34 (1997), pp. 1779-1791.
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 1779-1791
-
-
Dobson, D.C.1
Vogel, C.R.2
-
9
-
-
0029341230
-
Non-linear image recovery with half-quadratic regularisation and FFTs
-
D. GEMAN AND C. YANG, Non-linear image recovery with half-quadratic regularisation and FFTs, IEEE Trans. Imaging Process., 4 (1995), pp. 932-946.
-
(1995)
IEEE Trans. Imaging Process
, vol.4
, pp. 932-946
-
-
Geman, D.1
Yang, C.2
-
10
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268.
-
(1992)
Phys. D
, vol.60
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
11
-
-
0001556589
-
Iterative methods for total variation denoising
-
C. R. VOGEL AND M. E. OMAN, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), pp. 227-238.
-
(1996)
SIAM J. Sci. Comput.
, vol.17
, pp. 227-238
-
-
Vogel, C.R.1
Oman, M.E.2
-
12
-
-
0008520850
-
Linear convergence of generalized Weiszfeld's method
-
H. VOSS AND U. ECKHARDT, Linear convergence of generalized Weiszfeld's method, Computing, 25 (1980), pp. 243-251.
-
(1980)
Computing
, vol.25
, pp. 243-251
-
-
Voss, H.1
Eckhardt, U.2
-
13
-
-
0000281286
-
Sur le point pour lequel la somme des distances de n points donnés est minimum
-
E. WEISZFELD, Sur le point pour lequel la somme des distances de n points donnés est minimum, Tôhoku Math. J., 43 (1937), pp. 355-386.
-
(1937)
Tôhoku Math. J.
, vol.43
, pp. 355-386
-
-
Weiszfeld, E.1
|