메뉴 건너뛰기




Volumn 40, Issue 3, 2014, Pages 329-385

lp-Recovery of the Most Significant Subspace Among Multiple Subspaces with Outliers

Author keywords

Best approximating subspace; Geometric probability; Hybrid linear modeling; lpminimization; Optimization on the Grassmannian; Robust statistics

Indexed keywords


EID: 84919903045     PISSN: 01764276     EISSN: 14320940     Source Type: Journal    
DOI: 10.1007/s00365-014-9242-6     Document Type: Article
Times cited : (30)

References (49)
  • 1
    • 27144475603 scopus 로고    scopus 로고
    • Connect the dots: how many random points can a regular curve pass through?
    • Arias-Castro, E., Donoho, D.L., Huo, X., Tovey, C.A.: Connect the dots: how many random points can a regular curve pass through? Adv. Appl. Probab. 37(3), 571–603 (2005)
    • (2005) Adv. Appl. Probab , vol.37 , Issue.3 , pp. 571-603
    • Arias-Castro, E.1    Donoho, D.L.2    Huo, X.3    Tovey, C.A.4
  • 2
    • 84856032134 scopus 로고    scopus 로고
    • Spectral clustering based on local linear approximations
    • Arias-Castro, E., Chen, G., Lerman, G.: Spectral clustering based on local linear approximations. Electron. J. Stat. 5, 1537–1587 (2011)
    • (2011) Electron. J. Stat , vol.5 , pp. 1537-1587
    • Arias-Castro, E.1    Chen, G.2    Lerman, G.3
  • 3
    • 0027680635 scopus 로고
    • Orthogonal linear regression algorithm based on augmented matrix formulation
    • Bargiela, A., Hartley, J.K.: Orthogonal linear regression algorithm based on augmented matrix formulation. Comput. Oper. Res. 20, 829–836 (1993)
    • (1993) Comput. Oper. Res , vol.20 , pp. 829-836
    • Bargiela, A.1    Hartley, J.K.2
  • 4
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11 (2011)
    • (2011) J. ACM , vol.58 , Issue.3 , pp. 11
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 5
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.2 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 6
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
    • (2006) Commun. Pure Appl. Math , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 7
    • 0003280313 scopus 로고
    • n: au-delà des graphes Lipschitziens
    • David, G., Semmes, S.: Singular integrals and rectifiable sets in $$\mathbb{R}^n$$Rn: au-delà des graphes Lipschitziens. Astérisque 193, 1–145 (1991)
    • (1991) Astérisque , vol.193 , pp. 1-145
    • David, G.1    Semmes, S.2
  • 8
    • 51149181449 scopus 로고
    • The minimum in the gamma function
    • Deming, W.E., Colcord, C.G.: The minimum in the gamma function. Nature 135(3422), 917 (1935)
    • (1935) Nature , vol.135 , Issue.3422 , pp. 917
    • Deming, W.E.1    Colcord, C.G.2
  • 10
    • 38249034009 scopus 로고
    • n-norm based statistical data analysis
    • Dodge, Y.: An introduction to $$L_1$$L1-norm based statistical data analysis. Comput. Stat. Data Anal. 5(4), 239–253 (1987)
    • (1987) Comput. Stat. Data Anal , vol.5 , Issue.4 , pp. 239-253
    • Dodge, Y.1
  • 11
    • 33744552752 scopus 로고    scopus 로고
    • n-norm near-solution approximates the sparsest near-solution
    • Donoho, D.L.: For most large underdetermined systems of equations, the minimal $$l_1$$l1-norm near-solution approximates the sparsest near-solution. Commun. Pure Appl. Math. 59(7), 907–934 (2006)
    • (2006) Commun. Pure Appl. Math , vol.59 , Issue.7 , pp. 907-934
    • Donoho, D.L.1
  • 12
    • 33646365077 scopus 로고    scopus 로고
    • n-norm solution is also the sparsest solution
    • Donoho, D.L.: For most large underdetermined systems of linear equations the minimal $$l_1$$l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)
    • (2006) Commun. Pure Appl. Math , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 13
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints. SIAM
    • Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (electronic) (1999)
    • (1999) J. Matrix Anal. Appl. 20(2) , vol.303-353 , Issue.electronic
    • Edelman, A.1    Arias, T.A.2    Smith, S.T.3
  • 15
    • 0019574599 scopus 로고
    • Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
    • Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
    • (1981) Commun. ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.1    Bolles, R.2
  • 16
  • 18
    • 84919885105 scopus 로고    scopus 로고
    • Harter, H.L.: The method of least squares and some alternatives: Part II. Int. Stat. Rev. 42(3), 235–264+282 (1974)
    • Harter, H.L.: The method of least squares and some alternatives: Part II. Int. Stat. Rev. 42(3), 235–264+282 (1974)
  • 19
    • 0000315057 scopus 로고
    • The method of least squares and some alternatives. I
    • Harter, H.L.: The method of least squares and some alternatives. I. Int. Stat. Rev. 42, 147–174 (1974)
    • (1974) Int. Stat. Rev , vol.42 , pp. 147-174
    • Harter, H.L.1
  • 21
    • 84919885104 scopus 로고    scopus 로고
    • Lerman, G., Maunu, T.: Fast algorithm for robust subspace recovery (2014)
    • Lerman, G., Maunu, T.: Fast algorithm for robust subspace recovery (2014). arXiv:1406.6145
  • 22
    • 84867092906 scopus 로고    scopus 로고
    • Pminimization
    • Lerman, G., Zhang, T.: Robust recovery of multiple subspaces by geometric $${{l_p}}$$lp minimization. Ann. Stat. 39(5), 2686–2715 (2011)
    • (2011) Ann. Stat , vol.39 , Issue.5 , pp. 2686-2715
    • Lerman, G.1    Zhang, T.2
  • 23
    • 84919885103 scopus 로고    scopus 로고
    • Lerman, G., McCoy, M., Tropp, J.A., Zhang, T.: Robust computation of linear models, or how to find a needle in a haystack. Found. Math. Comput (2014) (to appear)
    • Lerman, G., McCoy, M., Tropp, J.A., Zhang, T.: Robust computation of linear models, or how to find a needle in a haystack. Found. Math. Comput (2014) (to appear)
  • 27
    • 84859831899 scopus 로고    scopus 로고
    • Two proposals for robust PCA using semidefinite programming
    • McCoy, M., Tropp, J.: Two proposals for robust PCA using semidefinite programming. Electron. J. Stat. 5, 1123–1160 (2011)
    • (2011) Electron. J. Stat , vol.5 , pp. 1123-1160
    • McCoy, M.1    Tropp, J.2
  • 28
    • 38249032274 scopus 로고
    • Least orthogonal absolute deviations
    • Nyquist, H.: Least orthogonal absolute deviations. Comput. Stat. Data Anal. 6(4), 361–367 (1988)
    • (1988) Comput. Stat. Data Anal , vol.6 , Issue.4 , pp. 361-367
    • Nyquist, H.1
  • 29
    • 0007437448 scopus 로고
    • 1problem
    • Osborne, M.R., Watson, G.A.: An analysis of the total approximation problem in separable norms, and an algorithm for the total $$l_1 $$l1 problem. SIAM J. Sci. Stat. Comput. 6(2), 410–424 (1985)
    • (1985) SIAM J. Sci. Stat. Comput , vol.6 , Issue.2 , pp. 410-424
    • Osborne, M.R.1    Watson, G.A.2
  • 30
    • 33747056370 scopus 로고    scopus 로고
    • The best bounds in Gautschi-Kershaw inequalities
    • Qi, F., Guo, B.-N., Chen, C.-P.: The best bounds in Gautschi-Kershaw inequalities. Math. Inequal. Appl. 9(3), 427–436 (2006)
    • (2006) Math. Inequal. Appl , vol.9 , Issue.3 , pp. 427-436
    • Qi, F.1    Guo, B.-N.2    Chen, C.-P.3
  • 32
    • 84884476031 scopus 로고    scopus 로고
    • A geometric analysis of subspace clustering with outliers
    • Soltanolkotabi, M., Candés, E.J.: A geometric analysis of subspace clustering with outliers. Ann. Stat. 40(4), 2195–2238 (2012)
    • (2012) Ann. Stat , vol.40 , Issue.4 , pp. 2195-2238
    • Soltanolkotabi, M.1    Candés, E.J.2
  • 34
    • 0000341740 scopus 로고
    • On orthogonal linear approximation
    • Späth, H., Watson, G.A.: On orthogonal linear approximation. Numer. Math. 51, 531–543 (1987)
    • (1987) Numer. Math , vol.51 , pp. 531-543
    • Späth, H.1    Watson, G.A.2
  • 35
    • 0012913015 scopus 로고
    • The finite-dimensional basis problem with an appendix on nets of Grassmann manifolds
    • Szarek, S.J.: The finite-dimensional basis problem with an appendix on nets of Grassmann manifolds. Acta Math. 151(3–4), 153–179 (1983)
    • (1983) Acta Math , vol.151 , Issue.3-4 , pp. 153-179
    • Szarek, S.J.1
  • 38
    • 0033894631 scopus 로고    scopus 로고
    • MLESAC: a new robust estimator with application to estimating image geometry
    • Torr, P.H.S., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Understand. 78(1), 138–156 (2000)
    • (2000) Comput. Vis. Image Understand , vol.78 , Issue.1 , pp. 138-156
    • Torr, P.H.S.1    Zisserman, A.2
  • 39
    • 84919885101 scopus 로고    scopus 로고
    • Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Eldar, Y.C., Kutyniok, G. (eds.) Compressed Sensing: Theory and Applications. Cambridge University Press (to appear)
    • Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Eldar, Y.C., Kutyniok, G. (eds.) Compressed Sensing: Theory and Applications. Cambridge University Press (to appear)
  • 40
    • 84919885100 scopus 로고    scopus 로고
    • Some Problems in Orthogonal Distance and Non-Orthogonal Distance Regression
    • Watson, G.A.: Some Problems in Orthogonal Distance and Non-Orthogonal Distance Regression. Defense Technical Information Center (2001)
    • (2001) Defense Technical Information Center
    • Watson, G.A.1
  • 41
    • 0344585467 scopus 로고    scopus 로고
    • 1orthogonal distance regression
    • Watson, G.A.: On the gauss-newton method for $$l_1$$l1 orthogonal distance regression. IMA J. Numer. Anal. 22(3), 345–357 (2002)
    • (2002) IMA J. Numer. Anal , vol.22 , Issue.3 , pp. 345-357
    • Watson, G.A.1
  • 42
    • 0001309563 scopus 로고
    • Differential geometry of Grassmann manifolds
    • Wong, Y.-C.: Differential geometry of Grassmann manifolds. Proc. Natl Acad. Sci. USA 57, 589–594 (1967)
    • (1967) Proc. Natl Acad. Sci. USA , vol.57 , pp. 589-594
    • Wong, Y.-C.1
  • 43
    • 85162008777 scopus 로고    scopus 로고
    • Robust PCA via outlier pursuit
    • Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. In: NIPS, pp. 2496–2504, 2010
    • (2010) NIPS , pp. 2496-2504
    • Xu, H.1    Caramanis, C.2    Sanghavi, S.3
  • 45
    • 34948837349 scopus 로고    scopus 로고
    • A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and nondegenerate
    • Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and nondegenerate. ECCV 4, 94–106 (2006)
    • (2006) ECCV , vol.4 , pp. 94-106
    • Yan, J.1    Pollefeys, M.2
  • 46
    • 84897049186 scopus 로고    scopus 로고
    • A novel m-estimator for robust PCA
    • Zhang, T., Lerman, G.: A novel m-estimator for robust PCA. J. Mach. Learn. Res. 15, 749–808 (2014)
    • (2014) J. Mach. Learn. Res , vol.15 , pp. 749-808
    • Zhang, T.1    Lerman, G.2
  • 49
    • 84867053797 scopus 로고    scopus 로고
    • Hybrid linear modeling via local best-fit flats
    • Zhang, T., Szlam, A., Wang, Y., Lerman, G.: Hybrid linear modeling via local best-fit flats. Int. J. Comput. Vis. 100, 217–240 (2012)
    • (2012) Int. J. Comput. Vis , vol.100 , pp. 217-240
    • Zhang, T.1    Szlam, A.2    Wang, Y.3    Lerman, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.