-
2
-
-
33846030511
-
Coincidence of actin filaments and talin is required to activate vinculin
-
Chen, H., D. M. Choudhury, and S. W. Craig. Coincidence of actin filaments and talin is required to activate vinculin. J. Biol. Chem. 281:40389–40398, 2006.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 40389-40398
-
-
Chen, H.1
Choudhury, D.M.2
Craig, S.W.3
-
3
-
-
78751689408
-
Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA
-
Chen, H., et al. Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA. Biophys. J. 100:517–523, 2011.
-
(2011)
Biophys. J.
, vol.100
, pp. 517-523
-
-
Chen, H.1
-
4
-
-
84888437737
-
Mechanical perturbation of filamin A immunoglobulin repeats 20-21 reveals potential non-equilibrium mechanochemical partner binding function
-
Chen, H., et al. Mechanical perturbation of filamin A immunoglobulin repeats 20-21 reveals potential non-equilibrium mechanochemical partner binding function. Sci. Rep. 3:1642, 2013.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1642
-
-
Chen, H.1
-
5
-
-
84898457452
-
Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring
-
Ciobanasu, C., B. Faivre, and C. Le Clainche. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat. Commun. 5:3095, 2014.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3095
-
-
Ciobanasu, C.1
Faivre, B.2
Le Clainche, C.3
-
6
-
-
41349115880
-
Force and kinetic barriers to initiation of DNA unzipping
-
Cocco, S., R. Monasson, and J. Marko. Force and kinetic barriers to initiation of DNA unzipping. Phys. Rev. E 65:1–23, 2002.
-
(2002)
Phys. Rev. E
, vol.65
, pp. 1-23
-
-
Cocco, S.1
Monasson, R.2
Marko, J.3
-
7
-
-
84861401482
-
Recent advances in magnetic tweezers
-
De Vlaminck, I., and C. Dekker. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41:453–472, 2012.
-
(2012)
Annu. Rev. Biophys.
, vol.41
, pp. 453-472
-
-
De Vlaminck, I.1
Dekker, C.2
-
8
-
-
59149094538
-
Stretching single talin rod molecules activates vinculin binding
-
Del Rio, A., et al. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641, 2009.
-
(2009)
Science
, vol.323
, pp. 638-641
-
-
Del Rio, A.1
-
9
-
-
84883501935
-
α-Catenin, vinculin, and F-actin in strengthening E-cadherin cell-cell adhesions and mechanosensing
-
Dufour, S., R.-M. Mège, and J. P. Thiery. α-Catenin, vinculin, and F-actin in strengthening E-cadherin cell-cell adhesions and mechanosensing. Cell Adhes. Migr. 7:345–350, 2013.
-
(2013)
Cell Adhes. Migr.
, vol.7
, pp. 345-350
-
-
Dufour, S.1
Mège, R.-M.2
Thiery, J.P.3
-
10
-
-
0031001349
-
Dynamic strength of molecular adhesion bonds
-
Evans, E., and K. Ritchie. Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555, 1997.
-
(1997)
Biophys. J.
, vol.72
, pp. 1541-1555
-
-
Evans, E.1
Ritchie, K.2
-
11
-
-
11844301327
-
A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head
-
Fillingham, I., et al. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 13:65–74, 2005.
-
(2005)
Structure
, vol.13
, pp. 65-74
-
-
Fillingham, I.1
-
12
-
-
0028261701
-
Single myosin molecule mechanics: piconewton forces and nanometre steps
-
Finer, J. T., R. M. Simmons, and J. A. Spudich. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119, 1994.
-
(1994)
Nature
, vol.368
, pp. 113-119
-
-
Finer, J.T.1
Simmons, R.M.2
Spudich, J.A.3
-
13
-
-
5444239061
-
Calpain-mediated proteolysis of talin regulates adhesion dynamics
-
Franco, S. J., et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat. Cell Biol. 6:977–983, 2004.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 977-983
-
-
Franco, S.J.1
-
14
-
-
84875425428
-
Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein
-
Fu, H., S. Le, H. Chen, K. Muniyappa, and J. Yan. Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein. Nucleic Acids Res. 41:924–932, 2013.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 924-932
-
-
Fu, H.1
Le, S.2
Chen, H.3
Muniyappa, K.4
Yan, J.5
-
15
-
-
79955573136
-
Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching
-
Fu, H., et al. Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching. Nucleic Acids Res. 39:3473–3481, 2011.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 3473-3481
-
-
Fu, H.1
-
16
-
-
33845457715
-
Traction forces exerted through N-cadherin contacts
-
Ganz, A., et al. Traction forces exerted through N-cadherin contacts. Biol. Cell 98:721–730, 2006.
-
(2006)
Biol. Cell
, vol.98
, pp. 721-730
-
-
Ganz, A.1
-
17
-
-
27744527513
-
Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod
-
Gingras, A. R., et al. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280:37217–37224, 2005.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 37217-37224
-
-
Gingras, A.R.1
-
18
-
-
38549103141
-
The structure of the C-terminal actin-binding domain of talin
-
Gingras, A. R., et al. The structure of the C-terminal actin-binding domain of talin. EMBO J. 27:458–469, 2008.
-
(2008)
EMBO J.
, vol.27
, pp. 458-469
-
-
Gingras, A.R.1
-
19
-
-
0036111913
-
Magnetic tweezers: micromanipulation and force measurement at the molecular level
-
Gosse, C., and V. Croquette. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82:3314–3329, 2002.
-
(2002)
Biophys. J.
, vol.82
, pp. 3314-3329
-
-
Gosse, C.1
Croquette, V.2
-
20
-
-
84884814050
-
Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: implications for talin activation
-
Goult, B. T., et al. Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: implications for talin activation. J. Struct. Biol. 184:21–32, 2013.
-
(2013)
J. Struct. Biol.
, vol.184
, pp. 21-32
-
-
Goult, B.T.1
-
21
-
-
84875439033
-
RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover
-
Goult, B. T., et al. RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover. J. Biol. Chem. 288:8238–8249, 2013.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 8238-8249
-
-
Goult, B.T.1
-
22
-
-
0029878720
-
VMD: visual molecular dynamics
-
Humphrey, W., A. Dalke, and K. Schulten. VMD: visual molecular dynamics. J. Mol. Graph. 14(33–8):27–28, 1996.
-
(1996)
J. Mol. Graph.
, vol.14
, Issue.33-8
, pp. 27-28
-
-
Humphrey, W.1
Dalke, A.2
Schulten, K.3
-
23
-
-
84876081773
-
Mechanosensitive systems at the cadherin-F-actin interface
-
Huveneers, S., and J. de Rooij. Mechanosensitive systems at the cadherin-F-actin interface. J. Cell Sci. 126:403–413, 2013.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 403-413
-
-
Huveneers, S.1
de Rooij, J.2
-
24
-
-
40149107045
-
How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism
-
Hytönen, V. P., and V. Vogel. How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism. PLoS Comput. Biol. 4:e24, 2008.
-
(2008)
PLoS Comput. Biol.
, vol.4
, pp. e24
-
-
Hytönen, V.P.1
Vogel, V.2
-
25
-
-
3042600016
-
Structural basis for amplifying vinculin activation by talin
-
Izard, T., and C. Vonrhein. Structural basis for amplifying vinculin activation by talin. J. Biol. Chem. 279:27667–27678, 2004.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 27667-27678
-
-
Izard, T.1
Vonrhein, C.2
-
26
-
-
0347717894
-
Vinculin activation by talin through helical bundle conversion
-
Izard, T., et al. Vinculin activation by talin through helical bundle conversion. Nature 427:171–175, 2004.
-
(2004)
Nature
, vol.427
, pp. 171-175
-
-
Izard, T.1
-
27
-
-
34547275473
-
Brownian motion in a field of force and the diffusion model of chemical reactions
-
Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304, 1940.
-
(1940)
Physica
, vol.7
, pp. 284-304
-
-
Kramers, H.A.1
-
28
-
-
34249705346
-
Force-induced activation of talin and its possible role in focal adhesion mechanotransduction
-
Lee, S. E., R. D. Kamm, and M. R. K. Mofrad. Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40:2096–2106, 2007.
-
(2007)
J. Biomech.
, vol.40
, pp. 2096-2106
-
-
Lee, S.E.1
Kamm, R.D.2
Mofrad, M.R.K.3
-
29
-
-
64149100431
-
RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences
-
Lee, H.-S., C. J. Lim, W. Puzon-McLaughlin, S. J. Shattil, and M. H. Ginsberg. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J. Biol. Chem. 284:5119–5127, 2009.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 5119-5127
-
-
Lee, H.-S.1
Lim, C.J.2
Puzon-McLaughlin, W.3
Shattil, S.J.4
Ginsberg, M.H.5
-
30
-
-
77951228475
-
Mechanical control of tissue and organ development
-
Mammoto, T., and D. E. Ingber. Mechanical control of tissue and organ development. Development 137:1407–1420, 2010.
-
(2010)
Development
, vol.137
, pp. 1407-1420
-
-
Mammoto, T.1
Ingber, D.E.2
-
31
-
-
84855163922
-
Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin
-
Margadant, F., et al. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9:e1001223, 2011.
-
(2011)
PLoS Biol.
, vol.9
, pp. e1001223
-
-
Margadant, F.1
-
32
-
-
33748443594
-
Regulation of cell-cell junctions by the cytoskeleton
-
Mège, R.-M., J. Gavard, and M. Lambert. Regulation of cell-cell junctions by the cytoskeleton. Curr. Opin. Cell Biol. 18:541–548, 2006.
-
(2006)
Curr. Opin. Cell Biol.
, vol.18
, pp. 541-548
-
-
Mège, R.-M.1
Gavard, J.2
Lambert, M.3
-
33
-
-
77955580383
-
Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing
-
Moore, S. W., P. Roca-Cusachs, and M. P. Sheetz. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev. Cell 19:194–206, 2010.
-
(2010)
Dev. Cell
, vol.19
, pp. 194-206
-
-
Moore, S.W.1
Roca-Cusachs, P.2
Sheetz, M.P.3
-
34
-
-
0025186789
-
Mechanosensitive ion channels
-
Morris, C. E. Mechanosensitive ion channels. J. Membr. Biol. 113:93–107, 1990.
-
(1990)
J. Membr. Biol.
, vol.113
, pp. 93-107
-
-
Morris, C.E.1
-
35
-
-
79952603041
-
New insights into vinculin function and regulation
-
Peng, X., E. S. Nelson, J. L. Maiers, and K. A. DeMali. New insights into vinculin function and regulation. Int. Rev. Cell Mol. Biol. 287:191–231, 2011.
-
(2011)
Int. Rev. Cell Mol. Biol.
, vol.287
, pp. 191-231
-
-
Peng, X.1
Nelson, E.S.2
Maiers, J.L.3
DeMali, K.A.4
-
36
-
-
84869102195
-
Finding the weakest link: exploring integrin-mediated mechanical molecular pathways
-
Roca-Cusachs, P., T. Iskratsch, and M. P. Sheetz. Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125:3025–3038, 2012.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 3025-3038
-
-
Roca-Cusachs, P.1
Iskratsch, T.2
Sheetz, M.P.3
-
37
-
-
0035146646
-
Force-induced melting of the DNA double helix 1. Thermodynamic analysis
-
Rouzina, I., and V. A. Bloomfield. Force-induced melting of the DNA double helix 1. Thermodynamic analysis. Biophys. J. 80:882–893, 2001.
-
(2001)
Biophys. J.
, vol.80
, pp. 882-893
-
-
Rouzina, I.1
Bloomfield, V.A.2
-
38
-
-
33751335857
-
Force sensing by mechanical extension of the Src family kinase substrate p130Cas
-
Sawada, Y., et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026, 2006.
-
(2006)
Cell
, vol.127
, pp. 1015-1026
-
-
Sawada, Y.1
-
39
-
-
84880217477
-
The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials
-
Schoen, I., B. L. Pruitt, and V. Vogel. The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Annu. Rev. Mater. Res. 43:589–618, 2013.
-
(2013)
Annu. Rev. Mater. Res.
, vol.43
, pp. 589-618
-
-
Schoen, I.1
Pruitt, B.L.2
Vogel, V.3
-
40
-
-
84860807182
-
Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness
-
Trichet, L., et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl. Acad. Sci. USA 109:6933–6938, 2012.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 6933-6938
-
-
Trichet, L.1
-
41
-
-
33645773666
-
Local force and geometry sensing regulate cell functions
-
Vogel, V., and M. Sheetz. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–275, 2006.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 265-275
-
-
Vogel, V.1
Sheetz, M.2
-
42
-
-
84877946982
-
Defining single molecular forces required to activate integrin and notch signaling
-
Wang, X., and T. Ha. Defining single molecular forces required to activate integrin and notch signaling. Science 340:991–994, 2013.
-
(2013)
Science
, vol.340
, pp. 991-994
-
-
Wang, X.1
Ha, T.2
-
43
-
-
84898467976
-
Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
-
Yao, M., et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4:4610, 2014.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4610
-
-
Yao, M.1
-
44
-
-
84905482347
-
Force-dependent conformational switch of α-catenin controls vinculin binding
-
Yao, M., et al. Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5:4525, 2014.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4525
-
-
Yao, M.1
-
45
-
-
84905594735
-
Dynamics and stability of polymorphic human telomeric G-quadruplex under tension
-
You, H., et al. Dynamics and stability of polymorphic human telomeric G-quadruplex under tension. Nucleic Acids Res. 42:8789–8795, 2014.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 8789-8795
-
-
You, H.1
-
46
-
-
84869098973
-
Signalling through mechanical inputs: a coordinated process
-
Zhang, H., and M. Labouesse. Signalling through mechanical inputs: a coordinated process. J. Cell Sci. 125:3039–3049, 2012.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 3039-3049
-
-
Zhang, H.1
Labouesse, M.2
-
47
-
-
84863992173
-
Arginylation-dependent regulation of a proteolytic product of talin is essential for cell-cell adhesion
-
Zhang, F., S. Saha, and A. Kashina. Arginylation-dependent regulation of a proteolytic product of talin is essential for cell-cell adhesion. J. Cell Biol. 197:819–836, 2012.
-
(2012)
J. Cell Biol.
, vol.197
, pp. 819-836
-
-
Zhang, F.1
Saha, S.2
Kashina, A.3
|