-
1
-
-
20844435854
-
Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
-
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
-
(2005)
IEEE Trans. Knowl. Data Eng
, vol.17
, Issue.6
, pp. 734-749
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
2
-
-
33750717265
-
Active collaborative filtering
-
Acapulco, Mexico:
-
Boutilier, C., Zemel, R.S., Marlin, B.: Active collaborative filtering. In: Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 98–106. Acapulco, Mexico (2003)
-
(2003)
Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence
, pp. 98-106
-
-
Boutilier, C.1
Zemel, R.S.2
Marlin, B.3
-
3
-
-
0036959356
-
Hybrid recommender systems
-
Burke, R.: Hybrid recommender systems. User Model. User Adapt. Interact. 12(4), 331–370 (2002)
-
(2002)
User Model. User Adapt. Interact
, vol.12
, Issue.4
, pp. 331-370
-
-
Burke, R.1
-
4
-
-
84897495349
-
General functional matrix factorization using gradient boosting
-
Chen, T., Li, H., Yang, Q., Yu, Y.: General functional matrix factorization using gradient boosting. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), JMLR Workshop and Conference Proceedings, vol., 28, pp. 436–444 (2013)
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13), JMLR Workshop and Conference Proceedings, vol., 28
, pp. 436-444
-
-
Chen, T.1
Li, H.2
Yang, Q.3
Yu, Y.4
-
5
-
-
0029679131
-
Active learning with statistical models
-
Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. J. Artif. Int. Res. 4(1), 129–145 (1996)
-
(1996)
J. Artif. Int. Res
, vol.4
, Issue.1
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
7
-
-
84870908261
-
Adapting to natural rating acquisition with combined active learning strategies
-
Springer-Verlag, Berlin:
-
Elahi, M., Ricci, F., Rubens, N.: Adapting to natural rating acquisition with combined active learning strategies. In: Proceedings of the 20th International Conference on Foundations of Intelligent Systems (ISMIS’12), pp. 254–263. Springer-Verlag, Berlin (2012)
-
(2012)
Proceedings of the 20th International Conference on Foundations of Intelligent Systems (ISMIS’12)
, pp. 254-263
-
-
Elahi, M.1
Ricci, F.2
Rubens, N.3
-
8
-
-
84892755296
-
Personality-based active learning for collaborative filtering recommender systems
-
Elahi, M., Braunhofer, M., Ricci, F., Tkalcic, M.: Personality-based active learning for collaborative filtering recommender systems. In: AI*IA, Springer, Lecture Notes in Computer Science, vol. 8249, pp. 360–371 (2013)
-
(2013)
AI*IA, Springer, Lecture Notes in Computer Science, vol. 8249
, pp. 360-371
-
-
Elahi, M.1
Braunhofer, M.2
Ricci, F.3
Tkalcic, M.4
-
9
-
-
84891751057
-
Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective
-
Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective. ACM Trans. Intell. Syst. Technol. 5(1), 13:1–13:33 (2014)
-
(2014)
ACM Trans. Intell. Syst. Technol
, vol.5
, Issue.1
, pp. 1-33
-
-
Elahi, M.1
Ricci, F.2
Rubens, N.3
-
10
-
-
79951727814
-
Learning attribute-to-feature mappings for cold-start recommendations
-
Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.: Learning attribute-to-feature mappings for cold-start recommendations. In: Proceedings of the 2010 IEEE International Conference on Data Mining, IEEE Computer Society (ICDM ’10), Washington, DC, USA, pp. 176–185 (2010)
-
(2010)
Proceedings of the 2010 IEEE International Conference on Data Mining, IEEE Computer Society (ICDM ’10), Washington, DC, USA
, pp. 176-185
-
-
Gantner, Z.1
Drumond, L.2
Freudenthaler, C.3
Rendle, S.4
Schmidt-Thieme, L.5
-
11
-
-
79952423377
-
Adaptive bootstrapping of recommender systems using decision trees
-
ACM, New York:
-
Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender systems using decision trees. In: WSDM, pp. 595–604. ACM, New York (2011)
-
(2011)
WSDM
, pp. 595-604
-
-
Golbandi, N.1
Koren, Y.2
Lempel, R.3
-
16
-
-
85061040925
-
Active learning for recommender systems
-
Karimi, R.: Active learning for recommender systems. KI-Künstliche Intelligenz, 1–4 (2014)
-
(2014)
KI-Künstliche Intelligenz
, pp. 1-4
-
-
Karimi, R.1
-
17
-
-
79961191913
-
Active learning for aspect model in recommender systems
-
Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Active learning for aspect model in recommender systems. In: CIDM, Paris pp. 162–167 (2011)
-
(2011)
CIDM, Paris
, pp. 162-167
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
18
-
-
80053146324
-
Non-myopic active learning for recommender systems based on matrix factorization
-
Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Non-myopic active learning for recommender systems based on matrix factorization. In: IRI, Las Vegas, pp. 299–303 (2011)
-
(2011)
IRI, Las Vegas
, pp. 299-303
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
19
-
-
84855759376
-
Towards optimal active learning for matrix factorization in recommender systems
-
Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Towards optimal active learning for matrix factorization in recommender systems. In: ICTAI, Florida, pp. 1069–1076 (2011)
-
(2011)
ICTAI, Florida
, pp. 1069-1076
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
20
-
-
84867366676
-
Exploiting the characteristics of matrix factorization for active learning in recommender systems
-
Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thiemee, L.: Exploiting the characteristics of matrix factorization for active learning in recommender systems. In: RecSys, Dublin, pp. 317–320 (2012)
-
(2012)
RecSys, Dublin
, pp. 317-320
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thiemee, L.4
-
21
-
-
84925011348
-
Improved questionnaire trees for active learning in recommender systems
-
Aachen, Germany:
-
Karimi, R., Nanopoulos, A., Schmidt-Thieme, L.: Improved questionnaire trees for active learning in recommender systems. In: Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, pp. 34–44. Aachen, Germany (2014)
-
(2014)
Proceedings of the 16th LWA Workshops: KDML, IR and FGWM
, pp. 34-44
-
-
Karimi, R.1
Nanopoulos, A.2
Schmidt-Thieme, L.3
-
22
-
-
84897688804
-
Factorized decision trees for active learning in recommender systems
-
Karimi, R., Wistuba, M., Nanopoulos, A., Schmidt-Thieme, L.: Factorized decision trees for active learning in recommender systems. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, Washington DC, pp. 404–411 (2013)
-
(2013)
2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, Washington DC
, pp. 404-411
-
-
Karimi, R.1
Wistuba, M.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
23
-
-
0010552039
-
Improving collaborative filtering for new-users by smart object selection
-
Kohrs, A., Mérialdo, B.: Improving collaborative filtering for new-users by smart object selection. In: ICME 2001, International Conference on Media Futures, 8–9 May 2001, Florence (2001)
-
(2001)
ICME 2001, International Conference on Media Futures, 8–9 May 2001, Florence
-
-
Kohrs, A.1
Mérialdo, B.2
-
24
-
-
0031103122
-
GroupLens: applying collaborative filtering to usenet news
-
Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997)
-
(1997)
Commun. ACM
, vol.40
, Issue.3
, pp. 77-87
-
-
Konstan, J.A.1
Miller, B.N.2
Maltz, D.3
Herlocker, J.L.4
Gordon, L.R.5
Riedl, J.6
-
25
-
-
80052399569
-
-
Koren, Y.: How useful is a lower rmse? http://www.netflixprize.com/community/viewtopic.php?id=828/ (2007). Accessed: 15 April 2013
-
(2007)
How useful is a lower rmse
-
-
Koren, Y.1
-
27
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)
-
(2009)
Computer
, vol.42
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
28
-
-
84925412186
-
Alleviating the sparsity in collaborative filtering using crowdsourcing
-
Lee, J., Jang, M., Lee, D., Hwang, W.S., Hong, J., Kim, S.W.: Alleviating the sparsity in collaborative filtering using crowdsourcing. In: Workshop on Crowdsourcing and Human Computation for Recommender Systems (CrowdRec), p. 5 (2013)
-
(2013)
Workshop on Crowdsourcing and Human Computation for Recommender Systems (CrowdRec)
, pp. 5
-
-
Lee, J.1
Jang, M.2
Lee, D.3
Hwang, W.S.4
Hong, J.5
Kim, S.W.6
-
31
-
-
0036384150
-
Getting to know you: Learning new user preferences in recommender systems
-
ACM Press, New York:
-
Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., Mcnee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: Learning new user preferences in recommender systems. In: Proceedings of the International Conference on Intelligent User Interfaces, pp. 127–134. ACM Press, New York (2002)
-
(2002)
Proceedings of the International Conference on Intelligent User Interfaces
, pp. 127-134
-
-
Rashid, A.M.1
Albert, I.2
Cosley, D.3
Lam, S.K.4
Mcnee, S.M.5
Konstan, J.A.6
Riedl, J.7
-
32
-
-
77954605272
-
-
10, ACM, New York:
-
Rashid, A.M., Karypis, G., Riedl, J.: Learning Preferences of New Users in Recommender Systems: An Information Theoretic Approach, vol. 10, pp. 99–100. ACM, New York (2008)
-
(2008)
Learning Preferences of New Users in Recommender Systems: An Information Theoretic Approach
, pp. 99-100
-
-
Rashid, A.M.1
Karypis, G.2
Riedl, J.3
-
34
-
-
84864576122
-
Active collaborative prediction with maximum margin matrix factorization
-
Rish, I., Tesauro, G.: Active collaborative prediction with maximum margin matrix factorization. In: ISAIM (2008)
-
(2008)
ISAIM
-
-
Rish, I.1
Tesauro, G.2
-
36
-
-
84925311594
-
Exploiting user demographic attributes for solving cold-start problem in recommender system
-
Safoury, L., Salah, A.: Exploiting user demographic attributes for solving cold-start problem in recommender system. Lect. Notes Softw. Eng. 1(3), 303–307 (2013)
-
(2013)
Lect. Notes Softw. Eng
, vol.1
, Issue.3
, pp. 303-307
-
-
Safoury, L.1
Salah, A.2
-
37
-
-
84977886950
-
Active learning and search on low-rank matrices
-
ACM, New York:
-
Sutherland, D.J., Póczos, B., Schneider, J.: Active learning and search on low-rank matrices. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’13), pp. 212–220. ACM, New York (2013)
-
(2013)
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’13)
, pp. 212-220
-
-
Sutherland, D.J.1
Póczos, B.2
Schneider, J.3
-
38
-
-
84880880273
-
Active learning for structure in bayesian networks
-
Morgan Kaufmann Publishers Inc., San Francisco:
-
Tong, S., Koller, D.: Active learning for structure in bayesian networks. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI’01), vol. 2, pp. 863–869. Morgan Kaufmann Publishers Inc., San Francisco (2001)
-
(2001)
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI’01), vol. 2
, pp. 863-869
-
-
Tong, S.1
Koller, D.2
-
39
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2002)
-
(2002)
J. Mach. Learn. Res
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
40
-
-
70350639690
-
Effective multi-label active learning for text classification
-
ACM, New York:
-
Yang, B., Sun, J.T., Wang, T., Chen, Z.: Effective multi-label active learning for text classification. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’09), pp. 917–926. ACM, New York (2009)
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’09)
, pp. 917-926
-
-
Yang, B.1
Sun, J.T.2
Wang, T.3
Chen, Z.4
-
41
-
-
70350344304
-
Alleviating cold-start problem by using implicit feedback. iN: ADMA, Springer
-
Zhang, L., Meng, X., Chen, J., Xiong, S.C., Duan, K.: Alleviating cold-start problem by using implicit feedback. iN: ADMA, Springer. Lecture Notes in Computer Science vol. 5678, pp. 763–771 (2009)
-
(2009)
Lecture Notes in Computer Science
, vol.5678
, pp. 763-771
-
-
Zhang, L.1
Meng, X.2
Chen, J.3
Xiong, S.C.4
Duan, K.5
-
42
-
-
80052119372
-
Functional matrix factorizations for cold-start recommendation
-
ACM, New York:
-
Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommendation. In: 34th international ACM SIGIR conference on Research and development in Information Retrieval, (SIGIR ’11), pp 315–324. ACM, New York (2011)
-
(2011)
34th international ACM SIGIR conference on Research and development in Information Retrieval, (SIGIR ’11)
, pp. 315-324
-
-
Zhou, K.1
Yang, S.H.2
Zha, H.3
|