메뉴 건너뛰기




Volumn 25, Issue 1, 2015, Pages 39-64

A supervised active learning framework for recommender systems based on decision trees

Author keywords

Active learning; Cold start problem; Matrix factorization; Recommender systems

Indexed keywords

DECISION TREES; FACTORIZATION; MATRIX ALGEBRA; RECOMMENDER SYSTEMS;

EID: 84925493252     PISSN: 09241868     EISSN: 15731391     Source Type: Journal    
DOI: 10.1007/s11257-014-9153-z     Document Type: Article
Times cited : (20)

References (43)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
    • Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems
    • Burke, R.: Hybrid recommender systems. User Model. User Adapt. Interact. 12(4), 331–370 (2002)
    • (2002) User Model. User Adapt. Interact , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.1
  • 5
  • 9
    • 84891751057 scopus 로고    scopus 로고
    • Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective
    • Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective. ACM Trans. Intell. Syst. Technol. 5(1), 13:1–13:33 (2014)
    • (2014) ACM Trans. Intell. Syst. Technol , vol.5 , Issue.1 , pp. 1-33
    • Elahi, M.1    Ricci, F.2    Rubens, N.3
  • 11
    • 79952423377 scopus 로고    scopus 로고
    • Adaptive bootstrapping of recommender systems using decision trees
    • ACM, New York:
    • Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender systems using decision trees. In: WSDM, pp. 595–604. ACM, New York (2011)
    • (2011) WSDM , pp. 595-604
    • Golbandi, N.1    Koren, Y.2    Lempel, R.3
  • 16
    • 85061040925 scopus 로고    scopus 로고
    • Active learning for recommender systems
    • Karimi, R.: Active learning for recommender systems. KI-Künstliche Intelligenz, 1–4 (2014)
    • (2014) KI-Künstliche Intelligenz , pp. 1-4
    • Karimi, R.1
  • 18
    • 80053146324 scopus 로고    scopus 로고
    • Non-myopic active learning for recommender systems based on matrix factorization
    • Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Non-myopic active learning for recommender systems based on matrix factorization. In: IRI, Las Vegas, pp. 299–303 (2011)
    • (2011) IRI, Las Vegas , pp. 299-303
    • Karimi, R.1    Freudenthaler, C.2    Nanopoulos, A.3    Schmidt-Thieme, L.4
  • 19
    • 84855759376 scopus 로고    scopus 로고
    • Towards optimal active learning for matrix factorization in recommender systems
    • Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Towards optimal active learning for matrix factorization in recommender systems. In: ICTAI, Florida, pp. 1069–1076 (2011)
    • (2011) ICTAI, Florida , pp. 1069-1076
    • Karimi, R.1    Freudenthaler, C.2    Nanopoulos, A.3    Schmidt-Thieme, L.4
  • 20
    • 84867366676 scopus 로고    scopus 로고
    • Exploiting the characteristics of matrix factorization for active learning in recommender systems
    • Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thiemee, L.: Exploiting the characteristics of matrix factorization for active learning in recommender systems. In: RecSys, Dublin, pp. 317–320 (2012)
    • (2012) RecSys, Dublin , pp. 317-320
    • Karimi, R.1    Freudenthaler, C.2    Nanopoulos, A.3    Schmidt-Thiemee, L.4
  • 25
    • 80052399569 scopus 로고    scopus 로고
    • Koren, Y.: How useful is a lower rmse? http://www.netflixprize.com/community/viewtopic.php?id=828/ (2007). Accessed: 15 April 2013
    • (2007) How useful is a lower rmse
    • Koren, Y.1
  • 27
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)
    • (2009) Computer , vol.42 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 34
    • 84864576122 scopus 로고    scopus 로고
    • Active collaborative prediction with maximum margin matrix factorization
    • Rish, I., Tesauro, G.: Active collaborative prediction with maximum margin matrix factorization. In: ISAIM (2008)
    • (2008) ISAIM
    • Rish, I.1    Tesauro, G.2
  • 36
    • 84925311594 scopus 로고    scopus 로고
    • Exploiting user demographic attributes for solving cold-start problem in recommender system
    • Safoury, L., Salah, A.: Exploiting user demographic attributes for solving cold-start problem in recommender system. Lect. Notes Softw. Eng. 1(3), 303–307 (2013)
    • (2013) Lect. Notes Softw. Eng , vol.1 , Issue.3 , pp. 303-307
    • Safoury, L.1    Salah, A.2
  • 39
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2002)
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 41
    • 70350344304 scopus 로고    scopus 로고
    • Alleviating cold-start problem by using implicit feedback. iN: ADMA, Springer
    • Zhang, L., Meng, X., Chen, J., Xiong, S.C., Duan, K.: Alleviating cold-start problem by using implicit feedback. iN: ADMA, Springer. Lecture Notes in Computer Science vol. 5678, pp. 763–771 (2009)
    • (2009) Lecture Notes in Computer Science , vol.5678 , pp. 763-771
    • Zhang, L.1    Meng, X.2    Chen, J.3    Xiong, S.C.4    Duan, K.5
  • 43


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.