메뉴 건너뛰기




Volumn , Issue , 2009, Pages 21-28

Pairwise preference regression for cold-start recommendation

Author keywords

Cold start problems; Normalized discounted cumulative gain; Ranking; Recommender system; User and item features

Indexed keywords

COLD START PROBLEMS; COLD-START; DEMOGRAPHIC INFORMATION; E-COMMERCE APPLICATIONS; EACHMOVIE DATASETS; FEATURE-BASED; HIGH QUALITY; LINEAR FUNCTIONS; RECOMMENDER SYSTEMS; REGRESSION MODEL; USER ENGAGEMENT;

EID: 72249103222     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1639714.1639720     Document Type: Conference Paper
Times cited : (285)

References (36)
  • 2
    • 70350664430 scopus 로고    scopus 로고
    • D. Agarwal and B.-C. Chen. Regression based latent factor models. In KDD, 2009.
    • D. Agarwal and B.-C. Chen. Regression based latent factor models. In KDD, 2009.
  • 3
    • 36849023117 scopus 로고    scopus 로고
    • D. Agarwal and S. Merugu. Predictive discrete latent factor models for large scale dyadic data. In KDD, 2007.
    • D. Agarwal and S. Merugu. Predictive discrete latent factor models for large scale dyadic data. In KDD, 2007.
  • 4
    • 0002734008 scopus 로고    scopus 로고
    • Horting hatches an egg: A new graph-theoretic approach to collaborative filtering
    • C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu. Horting hatches an egg: a new graph-theoretic approach to collaborative filtering. In ACM KDD, pages 201-212, 1999.
    • (1999) ACM KDD , pp. 201-212
    • Aggarwal, C.C.1    Wolf, J.L.2    Wu, K.-L.3    Yu, P.S.4
  • 5
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • M. Balabanovic and Y. Shoham. Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3):66-72, 1997.
    • (1997) Communications of the ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanovic, M.1    Shoham, Y.2
  • 6
    • 8644290257 scopus 로고    scopus 로고
    • A joint framework for collaborative and content filtering
    • J. Basilico and T. Hofmann. A joint framework for collaborative and content filtering. In ACM SIGIR, 2004.
    • (2004) ACM SIGIR
    • Basilico, J.1    Hofmann, T.2
  • 7
    • 0031640270 scopus 로고    scopus 로고
    • Recommendation as classification: Using social and content-based information in recommendation
    • C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In AAAI/IAAI, pages 714-720, 1998.
    • (1998) AAAI/IAAI , pp. 714-720
    • Basu, C.1    Hirsh, H.2    Cohen, W.W.3
  • 8
    • 36849079891 scopus 로고    scopus 로고
    • R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, 2007.
    • R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, 2007.
  • 9
    • 0002731035 scopus 로고    scopus 로고
    • Learning collaborative information filters
    • D. Billsus and M. J. Pazzani. Learning collaborative information filters. In ICML, pages 46-54, 1998.
    • (1998) ICML , pp. 46-54
    • Billsus, D.1    Pazzani, M.J.2
  • 10
    • 33749567580 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, pages 43-52, 1998.
    • (1998) UAI , pp. 43-52
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.3
  • 13
    • 33749236093 scopus 로고    scopus 로고
    • Collaborative prediction using ensembles of maximum margin matrix f actorization
    • D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix f actorization. In ICML, 2006.
    • (2006) ICML
    • DeCoste, D.1
  • 14
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133-151, 2001.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 16
    • 0002740439 scopus 로고
    • Parafac2: Mathematical and technical notes
    • R. A. Harshman. Parafac2: Mathematical and technical notes. UCLA working papers in phonetics, 22:30044, 1972.
    • (1972) UCLA working papers in phonetics , vol.22 , pp. 30044
    • Harshman, R.A.1
  • 18
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In ACM SIGIR, pages 230-237, 1999.
    • (1999) ACM SIGIR , pp. 230-237
    • Herlocker, J.L.1    Konstan, J.A.2    Borchers, A.3    Riedl, J.4
  • 19
    • 84862271600 scopus 로고    scopus 로고
    • Latent class models for collaborative filtering
    • T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In IJCAI, pages 688-693, 1999.
    • (1999) IJCAI , pp. 688-693
    • Hofmann, T.1    Puzicha, J.2
  • 20
    • 33749244569 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering
    • P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering. In AAAI, 2002.
    • (2002) AAAI
    • Melville, P.1    Mooney, R.2    Nagarajan, R.3
  • 21
    • 72249120789 scopus 로고    scopus 로고
    • Vibes: A platform-centric approach to building recommender systems
    • B. Nag. Vibes: A platform-centric approach to building recommender systems. IEEE Data Eng. Bull., 31(2):23-31, 2008.
    • (2008) IEEE Data Eng. Bull , vol.31 , Issue.2 , pp. 23-31
    • Nag, B.1
  • 22
    • 36749028922 scopus 로고    scopus 로고
    • A tensor higher-order singular value decomposition for integrative analysis of dna microarray data from different studies
    • L. Omberg, G. H. Golub, and O. Alter. A tensor higher-order singular value decomposition for integrative analysis of dna microarray data from different studies. PNAS, 104(47):18371-18376, 2007.
    • (2007) PNAS , vol.104 , Issue.47 , pp. 18371-18376
    • Omberg, L.1    Golub, G.H.2    Alter, O.3
  • 24
    • 33749578362 scopus 로고    scopus 로고
    • S.-T. Park, D. M. Pennock, O. Madani, N. Good, and D. DeCoste. Naïve filterbots for robust cold-start recommendations. In KDD, 2006.
    • S.-T. Park, D. M. Pennock, O. Madani, N. Good, and D. DeCoste. Naïve filterbots for robust cold-start recommendations. In KDD, 2006.
  • 25
    • 0033325071 scopus 로고    scopus 로고
    • A framework for collaborative, content-based and demographic filtering
    • M. J. Pazzani. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6):393-408, 1999.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.5-6 , pp. 393-408
    • Pazzani, M.J.1
  • 26
    • 0001391984 scopus 로고    scopus 로고
    • Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach
    • D. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach. In UAI, pages 473-480, 2000.
    • (2000) UAI , pp. 473-480
    • Pennock, D.1    Horvitz, E.2    Lawrence, S.3    Giles, C.L.4
  • 27
    • 0010279656 scopus 로고    scopus 로고
    • Application of dimensionality reduction in recommender systems-a case study
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender systems-a case study. In ACM WebKDD Workshop, 2000.
    • (2000) ACM WebKDD Workshop
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 28
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285-295, 2001.
    • (2001) , pp. 285-295
    • Sarwar, B.M.1    Karypis, G.2    Konstan, J.A.3    Reidl, J.4
  • 33
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279-311, 1966.
    • (1966) Psychometrika , vol.31 , pp. 279-311
    • Tucker, L.R.1
  • 35
    • 84885578920 scopus 로고    scopus 로고
    • Scalable collaborative filtering using cluster-based smoothing
    • G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and Z. Chen. Scalable collaborative filtering using cluster-based smoothing. In SIGIR, 2005.
    • (2005) SIGIR
    • Xue, G.1    Lin, C.2    Yang, Q.3    Xi, W.4    Zeng, H.5    Yu, Y.6    Chen, Z.7
  • 36
    • 18744362180 scopus 로고    scopus 로고
    • Taxonomy-driven computation of product recommendations
    • C. Ziegler, G. Lausen, and L. Schmidt. Taxonomy-driven computation of product recommendations. In CIKM, 2004.
    • (2004) CIKM
    • Ziegler, C.1    Lausen, G.2    Schmidt, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.