-
1
-
-
38949102073
-
Building better batteries
-
Armand, M.; Tarascon, J. M. Building better batteries. Nature2008, 451, 652–657.
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
2
-
-
81555207951
-
Electrical energy storage for the grid: A battery of choices
-
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science2011, 334, 928–935.
-
(2011)
Science
, vol.334
, pp. 928-935
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.M.3
-
3
-
-
84874071748
-
Addressing the grand challenges in energy storage
-
Liu, J. Addressing the grand challenges in energy storage. Adv. Funct. Mater.2013, 23, 924–928.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 924-928
-
-
Liu, J.1
-
4
-
-
77950175313
-
Solution-grown silicon nanowires for lithium-ion battery anodes
-
Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano2010, 4, 1443–1450.
-
(2010)
ACS Nano
, vol.4
, pp. 1443-1450
-
-
Chan, C.K.1
Patel, R.N.2
O’Connell, M.J.3
Korgel, B.A.4
Cui, Y.5
-
5
-
-
84897003773
-
2−x/carbon mesoporous microfiber composite as a safe and high-performance lithiumion battery anode
-
2−x/carbon mesoporous microfiber composite as a safe and high-performance lithiumion battery anode. ACS Nano2014, 8, 2977–2985.
-
(2014)
ACS Nano
, vol.8
, pp. 2977-2985
-
-
Jeong, G.1
Kim, J.G.2
Park, M.S.3
Seo, M.4
Hwang, S.M.5
Kim, Y.U.6
Kim, Y.J.7
Kim, J.H.8
Dou, S.X.9
-
6
-
-
84877793939
-
12 anodes for lithium rechargeable batteries
-
12 anodes for lithium rechargeable batteries. Nano Res.2013, 6, 365–372.
-
(2013)
Nano Res.
, vol.6
, pp. 365-372
-
-
Kim, J.G.1
Shi, D.2
Park, M.S.3
Jeong, G.4
Heo, Y.U.5
Seo, M.6
Kim, Y.J.7
Kim, J.H.8
Dou, S.X.9
-
7
-
-
84863657667
-
Graphene-confined Sn nanosheets with enhanced lithium storage capability
-
Luo, B.; Wang, B.; Li, X.; Jia, Y.; Liang, M.; Zhi, L. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater.2012, 24, 3538–3543.
-
(2012)
Adv. Mater.
, vol.24
, pp. 3538-3543
-
-
Luo, B.1
Wang, B.2
Li, X.3
Jia, Y.4
Liang, M.5
Zhi, L.6
-
8
-
-
84863338265
-
Reduced graphene oxide-mediated growth of uniform tincore/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties
-
Luo, B.; Wang, B.; Liang, M.; Ning, J.; Li, X.; Zhi, L. Reduced graphene oxide-mediated growth of uniform tincore/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv. Mater.2012, 24, 1405–1409.
-
(2012)
Adv. Mater.
, vol.24
, pp. 1405-1409
-
-
Luo, B.1
Wang, B.2
Liang, M.3
Ning, J.4
Li, X.5
Zhi, L.6
-
9
-
-
77957714684
-
4-graphene hybrid as a high-capacity anode material for lithium ion batteries
-
4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc.2010, 132, 13978–13980.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13978-13980
-
-
Wang, H.1
Cui, L.F.2
Yang, Y.3
Sanchez Casalongue, H.4
Robinson, J.T.5
Liang, Y.6
Cui, Y.7
Dai, H.8
-
10
-
-
67049108048
-
2-graphene hybrid nanostructures for enhanced Li-ion insertion
-
2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano2009, 3, 907–914.
-
(2009)
ACS Nano
, vol.3
, pp. 907-914
-
-
Wang, D.1
Choi, D.2
Li, J.3
Yang, Z.4
Nie, Z.5
Kou, R.6
Hu, D.7
Wang, C.8
Saraf, L.V.9
Zhang, J.10
-
11
-
-
84890528665
-
Electrochemical energy storage in a sustainable modern society
-
Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci.2014, 7, 14–18.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 14-18
-
-
Goodenough, J.B.1
-
12
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.2005, 4, 366–377.
-
(2005)
Nat. Mater.
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.M.4
Van Schalkwijk, W.5
-
13
-
-
77957905095
-
4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries
-
4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res.2010, 3, 733–737.
-
(2010)
Nano Res.
, vol.3
, pp. 733-737
-
-
Xiao, X.1
Lu, J.2
Li, Y.3
-
14
-
-
84892479867
-
Evaluating the performance of nanostructured materials as lithium-ion battery electrodes
-
Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res.2014, 7, 1–62.
-
(2014)
Nano Res.
, vol.7
, pp. 1-62
-
-
Armstrong, M.J.1
O’Dwyer, C.2
Macklin, W.J.3
Holmes, J.D.4
-
15
-
-
17044367449
-
4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries
-
4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries. Electrochem. Commun.2005, 7, 528–536.
-
(2005)
Electrochem. Commun.
, vol.7
, pp. 528-536
-
-
Johnson, C.1
Li, N.2
Vaughey, J.3
Hackney, S.4
Thackeray, M.5
-
16
-
-
34547495936
-
2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
-
2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem.2007, 17, 3112–3125.
-
(2007)
J. Mater. Chem.
, vol.17
, pp. 3112-3125
-
-
Thackeray, M.M.1
Kang, S.H.2
Johnson, C.S.3
Vaughey, J.T.4
Benedek, R.5
Hackney, S.6
-
17
-
-
77949579302
-
Local structure of layered oxide electrode materials for lithium-ion batteries
-
Bareno, J.; Lei, C.; Wen, J.; Kang, S. H.; Petrov, I.; Abraham, D. Local structure of layered oxide electrode materials for lithium-ion batteries. Adv. Mater.2010, 22, 1122–1127.
-
(2010)
Adv. Mater.
, vol.22
, pp. 1122-1127
-
-
Bareno, J.1
Lei, C.2
Wen, J.3
Kang, S.H.4
Petrov, I.5
Abraham, D.6
-
18
-
-
84866657758
-
2 during the initial charge/discharge cycle sudied by advanced electron microscopy
-
2 during the initial charge/discharge cycle sudied by advanced electron microscopy. Chem. Mater.2012, 24, 3558–3566.
-
(2012)
Chem. Mater.
, vol.24
, pp. 3558-3566
-
-
Boulineau, A.1
Simonin, L.2
Colin, J.F.O.3
Canévet, E.4
Daniel, L.5
Patoux, S.B.6
-
19
-
-
84878385118
-
2 cathode material for lithium-ion batteries
-
2 cathode material for lithium-ion batteries. Angew. Chem.Int. Ed.2013, 52, 5969–5973.
-
(2013)
Angew. Chem.Int. Ed.
, vol.52
, pp. 5969-5973
-
-
Yu, H.1
Shikawa, R.2
So, Y.G.3
Shibata, N.4
Kudo, T.5
Zhou, H.6
Ikuhara, Y.7
-
21
-
-
3042713113
-
2 NMR studies and first principles calculations
-
2 NMR studies and first principles calculations. Electrochem. Solid-State Lett.2004, 7, A167–A171.
-
(2004)
Electrochem. Solid-State Lett.
, vol.7
, pp. 167-171
-
-
Yoon, W.S.1
Iannopollo, S.2
Grey, C.P.3
Carlier, D.4
Gorman, J.5
Reed, J.6
Ceder, G.7
-
22
-
-
23844491655
-
2 (x = 1/12, 1/4, 5/12, and 1/2)
-
2 (x = 1/12, 1/4, 5/12, and 1/2). Electrochim. Acta2005, 50, 4778–4783.
-
(2005)
Electrochim. Acta
, vol.50
, pp. 4778-4783
-
-
Jiang, J.1
Dahn, J.2
-
23
-
-
33846795812
-
Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries
-
Park, S. H.; Kang, S. H.; Johnson, C.; Amine, K.; Thackeray, M. Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries. Electrochem. Commun.2007, 9, 262–268.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 262-268
-
-
Park, S.H.1
Kang, S.H.2
Johnson, C.3
Amine, K.4
Thackeray, M.5
-
24
-
-
39149138439
-
2 by analytical electron microscopy
-
2 by analytical electron microscopy. J. Power Sources2008, 178, 422–433.
-
(2008)
J. Power Sources
, vol.178
, pp. 422-433
-
-
Lei, C.1
Bareno, J.2
Wen, J.3
Petrov, I.4
Kang, S.H.5
Abraham, D.6
-
25
-
-
77957704778
-
2 (x = 1/3, 1/4, and 1/5)
-
2 (x = 1/3, 1/4, and 1/5). J. Electrochem. Soc.2010, 157, A1202–A1211.
-
(2010)
J. Electrochem. Soc.
, vol.157
, pp. 1202-1211
-
-
Fell, C.R.1
Carroll, K.J.2
Chi, M.3
Meng, Y.S.4
-
26
-
-
84874531024
-
2 cathode materials for lithiumion batteries
-
2 cathode materials for lithiumion batteries. Electrochim. Acta2013, 95, 87–94.
-
(2013)
Electrochim. Acta
, vol.95
, pp. 87-94
-
-
Gao, M.1
Lian, F.2
Liu, H.3
Tian, C.4
Ma, L.5
Yang, W.6
-
27
-
-
84891418027
-
The role of composition in the atomic structure, oxygen loss, and capacity of layered Li-Mn-Ni oxide cathodes
-
Jarvis, K. A.; Wang, C. C.; Manthiram, A.; Ferreira, P. J. The role of composition in the atomic structure, oxygen loss, and capacity of layered Li-Mn-Ni oxide cathodes. J. Mater. Chem. A2014, 2, 1353–1362.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 1353-1362
-
-
Jarvis, K.A.1
Wang, C.C.2
Manthiram, A.3
Ferreira, P.J.4
-
28
-
-
79958057242
-
Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
-
Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci.2011, 4, 2223–2233.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2223-2233
-
-
Xu, B.1
Fell, C.R.2
Chi, M.3
Meng, Y.S.4
-
29
-
-
33745713573
-
2
-
2. J. Am. Chem. Soc.2006, 128, 8694–8698.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 8694-8698
-
-
Armstrong, A.R.1
Holzapfel, M.2
Novák, P.3
Johnson, C.S.4
Kang, S.H.5
Thackeray, M.M.6
Bruce, P.G.7
-
30
-
-
33845233082
-
2-A high-rate, high-capacity cathode for lithium rechargeable batteries
-
2-A high-rate, high-capacity cathode for lithium rechargeable batteries. Adv. Mater.2006, 18, 905–909.
-
(2006)
Adv. Mater.
, vol.18
, pp. 905-909
-
-
Schougaard, S.B.1
Bréger, J.2
Jiang, M.3
Grey, C.P.4
Goodenough, J.B.5
-
32
-
-
18744380128
-
2 (0 ⩽ x ⩽ 1/2) compounds
-
2 (0 ⩽ x ⩽ 1/2) compounds. Chem. Mater.2005, 17, 2386–2394.
-
(2005)
Chem. Mater.
, vol.17
, pp. 2386-2394
-
-
Meng, Y.1
Ceder, G.2
Grey, C.3
Yoon, W.S.4
Jiang, M.5
Breger, J.6
Shao-Horn, Y.7
-
34
-
-
0036641617
-
2 cells using in situ X-ray diffraction and electrochemical studies
-
2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc.2002, 149, A815–A822.
-
(2002)
J. Electrochem. Soc.
, vol.149
, pp. 815-822
-
-
Lu, Z.1
Dahn, J.R.2
-
35
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
36
-
-
25744460922
-
Projector augmented-wave method
-
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953–17979.
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953-17979
-
-
Blöchl, P.E.1
-
37
-
-
0011236321
-
From ultrasoft pseudopotentials to the projector augmented-wave method
-
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B1999, 59, 1758–1775.
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758-1775
-
-
Kresse, G.1
Joubert, D.2
-
38
-
-
0001437693
-
Band theory and Mott insulators: Hubbard U instead of Stoner I
-
Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B1991, 44, 943–954.
-
(1991)
Phys. Rev. B
, vol.44
, pp. 943-954
-
-
Anisimov, V.I.1
Zaanen, J.2
Andersen, O.K.3
-
39
-
-
77957555115
-
Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds
-
Chevrier, V. L.; Ong, S. P.; Armiento, R.; Chan, M. K.; Ceder, G. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B2010, 82, 075122.
-
(2010)
Phys. Rev. B
, vol.82
, pp. 075122
-
-
Chevrier, V.L.1
Ong, S.P.2
Armiento, R.3
Chan, M.K.4
Ceder, G.5
-
41
-
-
34248651816
-
2x, 0 ⩽ x ⩽ 0.5)
-
2x, 0 ⩽ x ⩽ 0.5). J. Mater. Chem.2007, 17, 2069–2077.
-
(2007)
J. Mater. Chem.
, vol.17
, pp. 2069-2077
-
-
Kang, S.H.1
Kempgens, P.2
Greenbaum, S.3
Kropf, A.4
Amine, K.5
Thackeray, M.6
-
42
-
-
24344487275
-
2 solid solution
-
2 solid solution. J. Solid State Chem.2005, 178, 2575–2585.
-
(2005)
J. Solid State Chem.
, vol.178
, pp. 2575-2585
-
-
Bréger, J.1
Jiang, M.2
Dupré, N.3
Meng, Y.S.4
Shao-Horn, Y.5
Ceder, G.6
Grey, C.P.7
-
43
-
-
80051760355
-
Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution
-
Jarvis, K. A.; Deng, Z.; Allard, L. F.; Manthiram, A.; Ferreira, P. J. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem. Mater.2011, 23, 3614–3621.
-
(2011)
Chem. Mater.
, vol.23
, pp. 3614-3621
-
-
Jarvis, K.A.1
Deng, Z.2
Allard, L.F.3
Manthiram, A.4
Ferreira, P.J.5
-
44
-
-
84892476813
-
Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method
-
He, X.; Wang, J.; Kloepsch, R.; Krueger, S.; Jia, H.; Liu, H.; Vortmann, B.; Li, J. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res.2014, 7, 110–118.
-
(2014)
Nano Res.
, vol.7
, pp. 110-118
-
-
He, X.1
Wang, J.2
Kloepsch, R.3
Krueger, S.4
Jia, H.5
Liu, H.6
Vortmann, B.7
Li, J.8
-
45
-
-
84883079602
-
2 cathode materials prepared with different metal sources
-
2 cathode materials prepared with different metal sources. Electrochim. Acta2013, 109, 828–834.
-
(2013)
Electrochim. Acta
, vol.109
, pp. 828-834
-
-
Shi, S.1
Tu, J.2
Zhang, Y.3
Zhang, Y.4
Gu, C.5
Wang, X.6
-
46
-
-
84894611490
-
2 microcube prepared by binary template as a cathode material for lithium ion batteries
-
2 microcube prepared by binary template as a cathode material for lithium ion batteries. J. Power Sources2014, 257, 198–204.
-
(2014)
J. Power Sources
, vol.257
, pp. 198-204
-
-
Shi, S.1
Lou, Z.2
Xia, T.3
Wang, X.4
Gu, C.5
Tu, J.6
-
49
-
-
84886093520
-
3 after partial delithiation and re-lithiation
-
3 after partial delithiation and re-lithiation. Adv. Energy Mater.2013, 3, 1358–1367.
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 1358-1367
-
-
Wang, R.1
He, X.2
He, L.3
Wang, F.4
Xiao, R.5
Gu, L.6
Li, H.7
Chen, L.8
-
50
-
-
84857564594
-
3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries
-
3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater.2012, 24, 1192–1196.
-
(2012)
Adv. Mater.
, vol.24
, pp. 1192-1196
-
-
Sun, Y.K.1
Lee, M.J.2
Yoon, C.S.3
Hassoun, J.4
Amine, K.5
Scrosati, B.6
-
52
-
-
84893691030
-
Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries
-
Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science2014, 343, 519–522.
-
(2014)
Science
, vol.343
, pp. 519-522
-
-
Lee, J.1
Urban, A.2
Li, X.3
Su, D.4
Hautier, G.5
Ceder, G.6
-
54
-
-
84885951981
-
2 nano-particles and their surface modification using a polydopamine layer
-
2 nano-particles and their surface modification using a polydopamine layer. J. Power Sources2013, 244, 222–233.
-
(2013)
J. Power Sources
, vol.244
, pp. 222-233
-
-
Lee, H.J.1
Park, Y.J.2
-
55
-
-
84908129768
-
Capacity-controllable Li-rich cathode materials for lithium-ion batteries
-
Ye, D.; Ozawa, K.; Wang, B.; Hulicova-Jurcakova, D.; Zou, J.; Sun, C.; Wang, L. Capacity-controllable Li-rich cathode materials for lithium-ion batteries. Nano Energy2014, 6, 92–102.
-
(2014)
Nano Energy
, vol.6
, pp. 92-102
-
-
Ye, D.1
Ozawa, K.2
Wang, B.3
Hulicova-Jurcakova, D.4
Zou, J.5
Sun, C.6
Wang, L.7
-
56
-
-
84861376019
-
+-ion batteries
-
+-ion batteries. J. Electrochem. Soc.2012, 159, A781–A790.
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. 781-790
-
-
Croy, J.R.1
Kim, D.2
Balasubramanian, M.3
Gallagher, K.4
Kang, S.H.5
Thackeray, M.M.6
-
58
-
-
84894431822
-
Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay
-
Lee, E. S.; Manthiram, A. Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J. Mater. Chem. A2014, 2, 3932–3939.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 3932-3939
-
-
Lee, E.S.1
Manthiram, A.2
-
59
-
-
84875869842
-
2 cathode structures
-
2 cathode structures. J. Phys. Chem. C2013, 117, 6525–6536.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 6525-6536
-
-
Croy, J.R.1
Gallagher, K.G.2
Balasubramanian, M.3
Chen, Z.4
Ren, Y.5
Kim, D.6
Kang, S.H.7
Dees, D.W.8
Thackeray, M.M.9
-
60
-
-
84872831090
-
Formation of the spinel phase in the layered composite cathode used in Li-ion batteries
-
Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano2012, 7, 760–767.
-
(2012)
ACS Nano
, vol.7
, pp. 760-767
-
-
Gu, M.1
Belharouak, I.2
Zheng, J.3
Wu, H.4
Xiao, J.5
Genc, A.6
Amine, K.7
Thevuthasan, S.8
Baer, D.R.9
Zhang, J.G.10
-
61
-
-
84878537590
-
2 composite cathode materials for rechargeable lithium-ion batteries
-
2 composite cathode materials for rechargeable lithium-ion batteries. J. Power Sources2013, 241, 522–528.
-
(2013)
J. Power Sources
, vol.241
, pp. 522-528
-
-
Toprakci, O.1
Toprakci, H.A.2
Li, Y.3
Ji, L.4
Xue, L.5
Lee, H.6
Zhang, S.7
Zhang, X.8
-
63
-
-
84897582469
-
3 cathode material for Li-ion batteries
-
3 cathode material for Li-ion batteries. Adv. Energy Mater.2014, 4, 1300998.
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1300998
-
-
Rana, J.1
Stan, M.2
Kloepsch, R.3
Li, J.4
Schumacher, G.5
Welter, E.6
Zizak, I.7
Banhart, J.8
Winter, M.9
-
64
-
-
84878252603
-
Roles of surface chemistry on safety and electrochemistry in lithium ion batteries
-
Lee, K. T.; Jeong, S.; Cho, J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res.2012, 46, 1161–1170.
-
(2012)
Acc. Chem. Res.
, vol.46
, pp. 1161-1170
-
-
Lee, K.T.1
Jeong, S.2
Cho, J.3
|