-
1
-
-
38949102073
-
Building better batteries
-
Armand, M.; Tarascon, J.-M. Building better batteries. Nature2008, 451, 652-657.
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.-M.2
-
2
-
-
79955813630
-
Energy storage: Batteries take charge
-
Stein, A. Energy storage: Batteries take charge. Nat. Nanotechnol. 2011, 6, 262-263.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 262-263
-
-
Stein, A.1
-
3
-
-
76249131385
-
Challenges for rechargeable Li batteries
-
Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.
-
(2010)
Chem. Mater.
, vol.22
, pp. 587-603
-
-
Goodenough, J.B.1
Kim, Y.2
-
4
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.-M.3
-
5
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
-
(2005)
Nat. Mater.
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.-M.4
van Schalkwijk, W.5
-
6
-
-
80055002182
-
Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives
-
Song, M.-K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. L. Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives. Mat. Sci. Eng. R2011, 72, 203-252.
-
(2011)
Mat. Sci. Eng. R
, vol.72
, pp. 203-252
-
-
Song, M.-K.1
Park, S.2
Alamgir, F.M.3
Cho, J.4
Liu, M.L.5
-
7
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
-
(2005)
Nat. Mater.
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.-M.4
van Schalkwijk, W.5
-
8
-
-
80052230656
-
Challenges in the development of advanced Li-ion batteries: A review
-
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3243-3262
-
-
Etacheri, V.1
Marom, R.2
Elazari, R.3
Salitra, G.4
Aurbach, D.5
-
9
-
-
84856492368
-
Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices
-
Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724-803.
-
(2012)
Prog. Mater. Sci.
, vol.57
, pp. 724-803
-
-
Tiwari, J.N.1
Tiwari, R.N.2
Kim, K.S.3
-
10
-
-
78650828671
-
Nanostructured silicon for high capacity lithium battery anodes
-
Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56-72.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 56-72
-
-
Szczech, J.R.1
Jin, S.2
-
11
-
-
33845622840
-
Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells
-
Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources2007, 163, 1003-1039.
-
(2007)
J. Power Sources
, vol.163
, pp. 1003-1039
-
-
Kasavajjula, U.1
Wang, C.S.2
Appleby, A.J.3
-
12
-
-
62349107104
-
Structural and electrochemical study of the reaction of lithium with silicon nanowires
-
Chan, C. K.; Ruffo, R.; Hong, S. S.; Huggins, R. A.; Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources2009, 189, 34-39.
-
(2009)
J. Power Sources
, vol.189
, pp. 34-39
-
-
Chan, C.K.1
Ruffo, R.2
Hong, S.S.3
Huggins, R.A.4
Cui, Y.5
-
13
-
-
33846996042
-
An in situ X-ray diffraction study of the reaction of Li with crystalline Si
-
Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156-A161.
-
(2007)
J. Electrochem. Soc.
, vol.154
-
-
Li, J.1
Dahn, J.R.2
-
14
-
-
34247400269
-
Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials
-
Kang, Y.-M.; Lee, S.-M.; Kim, S.-J.; Jeong, G.-J.; Sung, M.-S.; Choi, W.-U.; Kim, S.-S. Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials. Electrochem. Commun. 2007, 9, 959-964.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 959-964
-
-
Kang, Y.-M.1
Lee, S.-M.2
Kim, S.-J.3
Jeong, G.-J.4
Sung, M.-S.5
Choi, W.-U.6
Kim, S.-S.7
-
15
-
-
37549013741
-
Si electrodes for Li-ion batteries-A new way to look at an old problem
-
Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J.-M. Si electrodes for Li-ion batteries-A new way to look at an old problem. J. Electrochem. Soc. 2008, 155, A158-A163.
-
(2008)
J. Electrochem. Soc.
, vol.155
-
-
Beattie, S.D.1
Larcher, D.2
Morcrette, M.3
Simon, B.4
Tarascon, J.-M.5
-
16
-
-
80051627673
-
Anisotropic swelling and fracture of silicon nanowires during lithiation
-
Liu, X. H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 2011, 11, 3312-3318.
-
(2011)
Nano Lett.
, vol.11
, pp. 3312-3318
-
-
Liu, X.H.1
Zheng, H.2
Zhong, L.3
Huang, S.4
Karki, K.5
Zhang, L.Q.6
Liu, Y.7
Kushima, A.8
Liang, W.T.9
Wang, J.W.10
-
17
-
-
77956429491
-
Lithium insertion in silicon nanowires: An ab initio study
-
Zhang, Q. F.; Zhang, W. X.; Wan, W. H.; Cui, Y.; Wang, E. G. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243-3249.
-
(2010)
Nano Lett.
, vol.10
, pp. 3243-3249
-
-
Zhang, Q.F.1
Zhang, W.X.2
Wan, W.H.3
Cui, Y.4
Wang, E.G.5
-
18
-
-
77950301248
-
In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation
-
Sethuraman, V. A.; Chon, M. J.; Shimshak, M.; Srinivasan, V.; Guduru, P. R. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources2010, 195, 5062-5066.
-
(2010)
J. Power Sources
, vol.195
, pp. 5062-5066
-
-
Sethuraman, V.A.1
Chon, M.J.2
Shimshak, M.3
Srinivasan, V.4
Guduru, P.R.5
-
19
-
-
77950928387
-
Synthesis and applications of one-dimensional semiconductors
-
Barth, S.; Hernandez-Ramirez, F.; Holmes, J. D.; Romano-Rodriguez, A. Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 2010, 55, 563-627.
-
(2010)
Prog. Mater. Sci.
, vol.55
, pp. 563-627
-
-
Barth, S.1
Hernandez-Ramirez, F.2
Holmes, J.D.3
Romano-Rodriguez, A.4
-
20
-
-
0038035343
-
Structured silicon anodes for lithium battery applications
-
Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75-A79.
-
(2003)
Electrochem. Solid-State Lett.
, vol.6
-
-
Green, M.1
Fielder, E.2
Scrosati, B.3
Wachtler, M.4
Moreno, J.S.5
-
21
-
-
84859716727
-
Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires
-
Yang, H.; Huang, S.; Huang, X.; Fan, F. F.; Liang, W. T.; Liu, X. H.; Chen, L.-Q.; Huang, J. Y.; Li, J.; Zhu, T.; et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 2012, 12, 1953-1958.
-
(2012)
Nano Lett.
, vol.12
, pp. 1953-1958
-
-
Yang, H.1
Huang, S.2
Huang, X.3
Fan, F.F.4
Liang, W.T.5
Liu, X.H.6
Chen, L.-Q.7
Huang, J.Y.8
Li, J.9
Zhu, T.10
-
22
-
-
37849002504
-
High-performance lithium battery anodes using silicon nanowires
-
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 31-35
-
-
Chan, C.K.1
Peng, H.L.2
Liu, G.3
McIlwrath, K.4
Zhang, X.F.5
Huggins, R.A.6
Cui, Y.7
-
23
-
-
42749086836
-
Silicon nanowires as negative electrode for lithium-ion microbatteries
-
Laik, B.; Eude, L.; Pereira-Ramos, J.-P.; Cojocaru, C. S.; Pribat, D.; Rouvière, E. Silicon nanowires as negative electrode for lithium-ion microbatteries. Electrochim. Acta2008, 53, 5528-5532.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 5528-5532
-
-
Laik, B.1
Eude, L.2
Pereira-Ramos, J.-P.3
Cojocaru, C.S.4
Pribat, D.5
Rouvière, E.6
-
24
-
-
76449096527
-
Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery
-
Kang, K.; Lee, H.-S.; Han, D.-W.; Kim, G.-S.; Lee, D.; Lee, G.; Kang, Y.-M.; Jo, M.-H. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl. Phys. Lett. 2010, 96, 053110.
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 053110
-
-
Kang, K.1
Lee, H.-S.2
Han, D.-W.3
Kim, G.-S.4
Lee, D.5
Lee, G.6
Kang, Y.-M.7
Jo, M.-H.8
-
25
-
-
67649862246
-
Impedance analysis of silicon nanowire lithium ion battery anodes
-
Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C2009, 113, 11390-11398.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 11390-11398
-
-
Ruffo, R.1
Hong, S.S.2
Chan, C.K.3
Huggins, R.A.4
Cui, Y.5
-
26
-
-
48249103169
-
Silicon nanowires for rechargeable lithium-ion battery anodes
-
Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S.-T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, 93, 033105.
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 033105
-
-
Peng, K.Q.1
Jie, J.S.2
Zhang, W.J.3
Lee, S.-T.4
-
27
-
-
84858254224
-
Highly interconnected Si nanowires for improved stability Li-ion battery anodes
-
Nguyen, H. T.; Yao, F.; Zamfir, M. R.; Biswas, C.; So, K. P.; Lee, Y. H.; Kim, S. M.; Cha, S. N.; Kim, J. M.; Pribat, D. Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater. 2011, 1, 1154-1161.
-
(2011)
Adv. Energy Mater.
, vol.1
, pp. 1154-1161
-
-
Nguyen, H.T.1
Yao, F.2
Zamfir, M.R.3
Biswas, C.4
So, K.P.5
Lee, Y.H.6
Kim, S.M.7
Cha, S.N.8
Kim, J.M.9
Pribat, D.10
-
28
-
-
84892487397
-
High performance silicon anode materials for next generation lithium ion batteries
-
Loveridge, M.; Lain, M.; Liu, F.; Coowar, F.; Macklin, B.; Green, M. High performance silicon anode materials for next generation lithium ion batteries. Abstract #12 The 15th International Meeting on Lithium Batteries. The Electrochemical Society2010.
-
(2010)
Abstract #12 The 15th International Meeting on Lithium Batteries. The Electrochemical Society
-
-
Loveridge, M.1
Lain, M.2
Liu, F.3
Coowar, F.4
Macklin, B.5
Green, M.6
-
29
-
-
84892488252
-
Low cost silicon fibres For lithium ion batteries
-
Liu, F.; Lain, M.; Loveridge, M.; Coowar, F.; Macklin, B.; Green, M. Low cost silicon fibres For lithium ion batteries. Abstract #47 The 15th International Meeting on Lithium Batteries. The Electrochemical Society2010.
-
(2010)
Abstract #47 The 15th International Meeting on Lithium Batteries. The Electrochemical Society
-
-
Liu, F.1
Lain, M.2
Loveridge, M.3
Coowar, F.4
Macklin, B.5
Green, M.6
-
30
-
-
70349662178
-
Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes
-
Huang, R.; Fan, X.; Shen, W. C.; Zhu, J. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 2009, 95, 133119.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 133119
-
-
Huang, R.1
Fan, X.2
Shen, W.C.3
Zhu, J.4
-
31
-
-
67349198111
-
Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes
-
Ji, L. W.; Zhang, X. W. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochem. Commun. 2009, 11, 1146-1149.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 1146-1149
-
-
Ji, L.W.1
Zhang, X.W.2
-
32
-
-
61649089508
-
Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material
-
Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688-3691.
-
(2008)
Nano Lett.
, vol.8
, pp. 3688-3691
-
-
Kim, H.1
Cho, J.2
-
33
-
-
77950175313
-
Solution-grown silicon nanowires for lithium-ion battery anodes
-
Chan, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano2010, 4, 1443-1450.
-
(2010)
ACS Nano
, vol.4
, pp. 1443-1450
-
-
Chan, C.K.1
Patel, R.N.2
O'Connell, M.J.3
Korgel, B.A.4
Cui, Y.5
-
34
-
-
61649106325
-
Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes
-
Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491-495.
-
(2009)
Nano Lett.
, vol.9
, pp. 491-495
-
-
Cui, L.-F.1
Ruffo, R.2
Chan, C.K.3
Peng, H.L.4
Cui, Y.5
-
35
-
-
84863110396
-
Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings
-
Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 2012, 5, 7927-7930.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7927-7930
-
-
Yao, Y.1
Liu, N.2
McDowell, M.T.3
Pasta, M.4
Cui, Y.5
-
36
-
-
80052795514
-
Novel size and surface oxide effects in silicon nanowires as lithium battery anodes
-
McDowell, M. T.; Lee, S. W.; Ryu, I.; Wu, H.; Nix, W. D.; Choi, J. W.; Cui, Y. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett. 2011, 11, 4018-4025.
-
(2011)
Nano Lett.
, vol.11
, pp. 4018-4025
-
-
McDowell, M.T.1
Lee, S.W.2
Ryu, I.3
Wu, H.4
Nix, W.D.5
Choi, J.W.6
Cui, Y.7
-
37
-
-
84861091085
-
Porous doped silicon nanowires for lithium ion battery anode with long cycle life
-
Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318-2323.
-
(2012)
Nano Lett.
, vol.12
, pp. 2318-2323
-
-
Ge, M.Y.1
Rong, J.P.2
Fang, X.3
Zhou, C.W.4
-
38
-
-
72849145531
-
Silicon nanotube battery anodes
-
Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844-3847.
-
(2009)
Nano Lett.
, vol.9
, pp. 3844-3847
-
-
Park, M.-H.1
Kim, M.G.2
Joo, J.3
Kim, K.4
Kim, J.5
Ahn, S.6
Cui, Y.7
Cho, J.8
-
39
-
-
77952372071
-
Arrays of sealed silicon nanotubes as anodes for lithium ion batteries
-
Song, T.; Xia, J. L.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710-1716.
-
(2010)
Nano Lett.
, vol.10
, pp. 1710-1716
-
-
Song, T.1
Xia, J.L.2
Lee, J.-H.3
Lee, D.H.4
Kwon, M.-S.5
Choi, J.-M.6
Wu, J.7
Doo, S.K.8
Chang, H.9
Park, W.I.10
-
40
-
-
74149088360
-
Enhanced reversible lithium storage in a nanosize silicon/graphene composite
-
Chou, S.-L.; Wang, J.-Z.; Choucair, M.; Liu, H.-K.; Stride, J. A.; Dou, S.-X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303-306.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 303-306
-
-
Chou, S.-L.1
Wang, J.-Z.2
Choucair, M.3
Liu, H.-K.4
Stride, J.A.5
Dou, S.-X.6
-
41
-
-
77949356288
-
A critical size of silicon nano-anodes for lithium rechargeable batteries
-
Kim, H.; Seo, M.; Park, M.-H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2010, 49, 2146-2149.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 2146-2149
-
-
Kim, H.1
Seo, M.2
Park, M.-H.3
Cho, J.4
-
42
-
-
36549089601
-
Nest-like silicon nanospheres for high-capacity lithium storage
-
Ma, H.; Cheng, F.; Chen, J.-Y.; Zhao, J.-Z.; Li, C.-S.; Tao, Z.-L.; Liang, J. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 2007, 19, 4067-4070.
-
(2007)
Adv. Mater.
, vol.19
, pp. 4067-4070
-
-
Ma, H.1
Cheng, F.2
Chen, J.-Y.3
Zhao, J.-Z.4
Li, C.-S.5
Tao, Z.-L.6
Liang, J.7
-
43
-
-
79960213953
-
Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
-
Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949-2954.
-
(2011)
Nano Lett.
, vol.11
, pp. 2949-2954
-
-
Yao, Y.1
McDowell, M.T.2
Ryu, I.3
Wu, H.4
Liu, N.5
Hu, L.B.6
Nix, W.D.7
Cui, Y.8
-
44
-
-
77950021498
-
High-performance lithium-ion anodes using a hierarchical bottom-up approach
-
Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.
-
(2010)
Nat. Mater.
, vol.9
, pp. 353-358
-
-
Magasinski, A.1
Dixon, P.2
Hertzberg, B.3
Kvit, A.4
Ayala, J.5
Yushin, G.6
-
45
-
-
66349105140
-
Improvement of cyclability of Si as anode for Li-ion batteries
-
Ding, N.; Xu, J.; Yao, Y. X.; Wegner, G.; Lieberwirth, I.; Chen, C. H. Improvement of cyclability of Si as anode for Li-ion batteries. J. Power Sources2009, 192, 644-651.
-
(2009)
J. Power Sources
, vol.192
, pp. 644-651
-
-
Ding, N.1
Xu, J.2
Yao, Y.X.3
Wegner, G.4
Lieberwirth, I.5
Chen, C.H.6
-
46
-
-
77949356255
-
Silicon nanoparticles-graphene paper composites for Li ion battery anodes
-
Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025-2027.
-
(2010)
Chem. Commun.
, vol.46
, pp. 2025-2027
-
-
Lee, J.K.1
Smith, K.B.2
Hayner, C.M.3
Kung, H.H.4
-
47
-
-
53449094361
-
x/C nanocomposite as anode material for lithium-ion batteries
-
x/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 2008, 47, 1645-1649.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 1645-1649
-
-
Hu, Y.-S.1
Demir-Cakan, R.2
Titirici, M.-M.3
Müller, J.-O.4
Schlögl, R.5
Antonietti, M.6
Maier, J.7
-
48
-
-
77951730943
-
Nanostructured hybrid silicon/ carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes
-
Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/ carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano2010, 4, 2233-2241.
-
(2010)
ACS Nano
, vol.4
, pp. 2233-2241
-
-
Wang, W.1
Kumta, P.N.2
-
49
-
-
57749088573
-
Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries
-
Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151-10154.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 10151-10154
-
-
Kim, H.1
Han, B.2
Choo, J.3
Cho, J.4
-
50
-
-
34247584583
-
Nano-porous Si/C composites for anode material of lithium-ion batteries
-
Zheng, Y.; Yang, J.; Wang, J. L.; NuLi, Y. N. Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochim. Acta2007, 52, 5863-5867.
-
(2007)
Electrochim. Acta
, vol.52
, pp. 5863-5867
-
-
Zheng, Y.1
Yang, J.2
Wang, J.L.3
NuLi, Y.N.4
-
51
-
-
34247247277
-
Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery
-
Jiang, T.; Zhang, S. C.; Qiu, X. P.; Zhu, W. T.; Chen, L. Q. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem. Commun. 2007, 9, 930-934.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 930-934
-
-
Jiang, T.1
Zhang, S.C.2
Qiu, X.P.3
Zhu, W.T.4
Chen, L.Q.5
-
52
-
-
80053579364
-
A major constituent of brown algae for use in high-capacity Li-ion batteries
-
Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science2011, 334, 75-79.
-
(2011)
Science
, vol.334
, pp. 75-79
-
-
Kovalenko, I.1
Zdyrko, B.2
Magasinski, A.3
Hertzberg, B.4
Milicev, Z.5
Burtovyy, R.6
Luzinov, I.7
Yushin, G.8
-
53
-
-
38749129063
-
High capacity Li ion battery anodes using Ge nanowires
-
Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307-309.
-
(2008)
Nano Lett.
, vol.8
, pp. 307-309
-
-
Chan, C.K.1
Zhang, X.F.2
Cui, Y.3
-
54
-
-
2942565804
-
Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities
-
Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 2004, 151, A698-A702.
-
(2004)
J. Electrochem. Soc.
, vol.151
-
-
Graetz, J.1
Ahn, C.C.2
Yazami, R.3
Fultz, B.4
-
55
-
-
37549058826
-
Study of germanium as electrode in thin-film battery
-
Laforge, B.; Levan-Jodin, L.; Salot, R.; Billard, A. Study of germanium as electrode in thin-film battery. J. Electrochem. Soc. 2008, 155, A181-A188.
-
(2008)
J. Electrochem. Soc.
, vol.155
-
-
Laforge, B.1
Levan-Jodin, L.2
Salot, R.3
Billard, A.4
-
56
-
-
80052817703
-
Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study
-
Liu, X. H.; Huang, S.; Picraux, S. T.; Li, J.; Zhu, T.; Huang, J. Y. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 2011, 11, 3991-3997.
-
(2011)
Nano Lett.
, vol.11
, pp. 3991-3997
-
-
Liu, X.H.1
Huang, S.2
Picraux, S.T.3
Li, J.4
Zhu, T.5
Huang, J.Y.6
-
57
-
-
84857912592
-
Germanium nanowires-based carbon composite as anodes for lithium-ion batteries
-
Tan, L. P.; Lu, Z. Y.; Tan, H. T.; Zhu, J. X.; Rui, X. H.; Yan, Q. Y.; Hng, H. H. Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J. Power Sources2012, 206, 253-258.
-
(2012)
J. Power Sources
, vol.206
, pp. 253-258
-
-
Tan, L.P.1
Lu, Z.Y.2
Tan, H.T.3
Zhu, J.X.4
Rui, X.H.5
Yan, Q.Y.6
Hng, H.H.7
-
58
-
-
39349087536
-
Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries
-
Yoon, S.; Park, C.-M.; Sohn, H.-J. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett. 2008, 11, A42-A45.
-
(2008)
Electrochem. Solid-State Lett.
, vol.11
-
-
Yoon, S.1
Park, C.-M.2
Sohn, H.-J.3
-
59
-
-
80051588257
-
Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity
-
Ko, Y.-D.; Kang, J.-G.; Lee, G.-H.; Park, J.-G.; Park, K.-S.; Jin, Y.-H.; Kim, D.-W. Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity. Nanoscale2011, 3, 3371-3375.
-
(2011)
Nanoscale
, vol.3
, pp. 3371-3375
-
-
Ko, Y.-D.1
Kang, J.-G.2
Lee, G.-H.3
Park, J.-G.4
Park, K.-S.5
Jin, Y.-H.6
Kim, D.-W.7
-
60
-
-
79960712618
-
Chemical functionalisation of silicon and germanium nanowires
-
Collins, G.; Holmes, J. D. Chemical functionalisation of silicon and germanium nanowires. J. Mater. Chem. 2011, 21, 11052-11069.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 11052-11069
-
-
Collins, G.1
Holmes, J.D.2
-
61
-
-
79851499326
-
High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries
-
Seo, M.-H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425-428.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 425-428
-
-
Seo, M.-H.1
Park, M.2
Lee, K.T.3
Kim, K.4
Kim, J.5
Cho, J.6
-
62
-
-
77955937607
-
Germanium-single-wall carbon nanotube anodes for lithium ion batteries
-
Dileo, R. A.; Ganter, M. J.; Landi, B. J.; Raffaelle, R. P. Germanium-single-wall carbon nanotube anodes for lithium ion batteries. J. Mater. Res. 2011, 25, 1441-1446.
-
(2011)
J. Mater. Res.
, vol.25
, pp. 1441-1446
-
-
Dileo, R.A.1
Ganter, M.J.2
Landi, B.J.3
Raffaelle, R.P.4
-
63
-
-
70549106866
-
A novel germanium/carbon nanotubes nanocomposite for lithium storage material
-
Cui, G. L.; Gu, L.; Kaskhedikar, N.; van Aken, P. A.; Maier, J. A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim. Acta2010, 55, 985-988.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 985-988
-
-
Cui, G.L.1
Gu, L.2
Kaskhedikar, N.3
van Aken, P.A.4
Maier, J.5
-
64
-
-
84856178972
-
Si/Ge double-layered nanotube array as lithium ion battery anode
-
Song, T.; Cheng, H.; Choi, H.; Lee, J.; Lee, J.-H.; Han, H.; Lee, D. H.; Yoo, D. S.; Kwon, M.-S.; Choi, J.-M.; et al. Si/Ge double-layered nanotube array as lithium ion battery anode. ACS Nano2012, 6, 303-309.
-
(2012)
ACS Nano
, vol.6
, pp. 303-309
-
-
Song, T.1
Cheng, H.2
Choi, H.3
Lee, J.4
Lee, J.-H.5
Han, H.6
Lee, D.H.7
Yoo, D.S.8
Kwon, M.-S.9
Choi, J.-M.10
-
65
-
-
80053487425
-
Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries
-
Park, M.-H.; Cho, Y. H.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J. Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Ed. 2011, 50, 9647-9650.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 9647-9650
-
-
Park, M.-H.1
Cho, Y.H.2
Kim, K.3
Kim, J.4
Liu, M.L.5
Cho, J.6
-
66
-
-
76649104028
-
Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies
-
Park, M.-H.; Kim, K.; Kim, J.; Cho, J. Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies. Adv. Mater. 2010, 22, 415-418.
-
(2010)
Adv. Mater.
, vol.22
, pp. 415-418
-
-
Park, M.-H.1
Kim, K.2
Kim, J.3
Cho, J.4
-
67
-
-
84861630450
-
Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery
-
Seng, K. H.; Park, M.-H.; Guo, Z. P.; Liu, H. K.; Cho, J. Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. Angew. Chem. Int. Ed. 2012, 51, 5657-5661.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 5657-5661
-
-
Seng, K.H.1
Park, M.-H.2
Guo, Z.P.3
Liu, H.K.4
Cho, J.5
-
68
-
-
76449104601
-
Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction
-
Yang, L. C.; Gao, Q. S.; Li, L.; Tang, Y.; Wu, Y. P. Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Commun. 2010, 12, 418-421.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 418-421
-
-
Yang, L.C.1
Gao, Q.S.2
Li, L.3
Tang, Y.4
Wu, Y.P.5
-
69
-
-
84555187088
-
x as high-capacity anodes for Li ion batteries with very long cycling life
-
x as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692-20695.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 20692-20695
-
-
Wang, X.-L.1
Han, W.-Q.2
Chen, H.Y.3
Bai, J.M.4
Tyson, T.A.5
Yu, X.-Q.6
Wang, X.-J.7
Yang, X.-Q.8
-
71
-
-
84859304135
-
Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries
-
Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale2012, 4, 2526-2542.
-
(2012)
Nanoscale
, vol.4
, pp. 2526-2542
-
-
Wu, H.B.1
Chen, J.S.2
Hng, H.H.3
Lou, X.W.D.4
-
72
-
-
84859560154
-
Metal oxide hollow nanostructures for lithium-ion batteries
-
Wang, Z. Y.; Zhou, L.; Lou, X. W. D. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.
-
(2012)
Adv. Mater.
, vol.24
, pp. 1903-1911
-
-
Wang, Z.Y.1
Zhou, L.2
Lou, X.W.D.3
-
73
-
-
60649111252
-
High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries
-
Bazin, L.; Mitra, S.; Taberna, P. L.; Poizot, P.; Gressier, M.; Menu, M. J.; Barnabé, A.; Simon, P.; Tarascon, J.-M. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries. J. Power Sources2009, 188, 578-582.
-
(2009)
J. Power Sources
, vol.188
, pp. 578-582
-
-
Bazin, L.1
Mitra, S.2
Taberna, P.L.3
Poizot, P.4
Gressier, M.5
Menu, M.J.6
Barnabé, A.7
Simon, P.8
Tarascon, J.-M.9
-
74
-
-
78650103818
-
2 nanowire electrode
-
2 nanowire electrode. Science2010, 330, 1515-1520.
-
(2010)
Science
, vol.330
, pp. 1515-1520
-
-
Huang, J.Y.1
Zhong, L.2
Wang, C.M.3
Sullivan, J.P.4
Xu, W.5
Zhang, L.Q.6
Mao, S.X.7
Hudak, N.S.8
Liu, X.H.9
Subramanian, A.10
-
76
-
-
65249186693
-
Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries
-
Meduri, P.; Pendyala, C.; Kumar, V.; Sumanasekera, G. U.; Sunkara, M. K. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 2009, 9, 612-616.
-
(2009)
Nano Lett.
, vol.9
, pp. 612-616
-
-
Meduri, P.1
Pendyala, C.2
Kumar, V.3
Sumanasekera, G.U.4
Sunkara, M.K.5
-
78
-
-
62549090203
-
2 nanorod array electrodes for lithium-ion batteries
-
2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 2009, 19, 1859-1864.
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 1859-1864
-
-
Liu, J.P.1
Li, Y.Y.2
Huang, X.T.3
Ding, R.M.4
Hu, Y.Y.5
Jiang, J.6
Liao, L.7
-
79
-
-
67649295059
-
2@carbon hollow nanospheres for highly reversible lithium storage
-
2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536-2539.
-
(2009)
Adv. Mater.
, vol.21
, pp. 2536-2539
-
-
Lou, X.W.1
Li, C.M.2
Archer, L.A.3
-
80
-
-
70349509854
-
2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries
-
2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim. Acta2009, 54, 7519-7524.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 7519-7524
-
-
Chou, S.-L.1
Wang, J.-Z.2
Zhong, C.3
Rahman, M.M.4
Liu, H.-K.5
Dou, S.-X.6
-
81
-
-
55849134875
-
2/carbon composite hollow spheres and their lithium storage properties
-
2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 2008, 20, 6562-6566.
-
(2008)
Chem. Mater.
, vol.20
, pp. 6562-6566
-
-
Lou, X.W.1
Deng, D.2
Lee, J.Y.3
Archer, L.4
-
82
-
-
43249090515
-
2@C core-shell spheres: Synthesis,^characterization,^and performance in reversible Li-ion storage
-
2@C core-shell spheres: Synthesis, characterization, and performance in reversible Li-ion storage. J. Mater. Sci. 2008, 43, 2778-2784.
-
(2008)
J. Mater. Sci.
, vol.43
, pp. 2778-2784
-
-
Qiao, H.1
Zheng, Z.2
Zhang, L.Z.3
Xiao, L.F.4
-
83
-
-
76949100802
-
2/C composites as high performance anodes for lithium ion batteries
-
2/C composites as high performance anodes for lithium ion batteries. Chem. Commun. 2010, 46, 1437-1439.
-
(2010)
Chem. Commun.
, vol.46
, pp. 1437-1439
-
-
Liu, J.1
Li, W.2
Manthiram, A.3
-
84
-
-
71049118493
-
2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries
-
2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem. C2009, 113, 20504-20508.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 20504-20508
-
-
Chen, J.S.1
Cheah, Y.L.2
Chen, Y.T.3
Jayaprakash, N.4
Madhavi, S.5
Yang, Y.H.6
Lou, X.W.7
-
85
-
-
34548626482
-
Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries
-
Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336-2340.
-
(2007)
Adv. Mater.
, vol.19
, pp. 2336-2340
-
-
Derrien, G.1
Hassoun, J.2
Panero, S.3
Scrosati, B.4
-
86
-
-
54949153100
-
A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance
-
Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169-3175.
-
(2008)
Adv. Mater.
, vol.20
, pp. 3169-3175
-
-
Hassoun, J.1
Derrien, G.2
Panero, S.3
Scrosati, B.4
-
87
-
-
70349915712
-
Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries
-
Yu, Y.; Gu, L.; Wang, C. L.; Dhanabalan, A.; van Aken, P. A.; Maier, J. Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Ed. 2009, 48, 6485-6489.
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 6485-6489
-
-
Yu, Y.1
Gu, L.2
Wang, C.L.3
Dhanabalan, A.4
van Aken, P.A.5
Maier, J.6
-
88
-
-
70449336487
-
Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries
-
Wang, G. X.; Wang, B.; Wang, X. L.; Park, J.; Dou, S. X.; Ahn, H.; Kim, K. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 2009, 19, 8378-8384.
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 8378-8384
-
-
Wang, G.X.1
Wang, B.2
Wang, X.L.3
Park, J.4
Dou, S.X.5
Ahn, H.6
Kim, K.7
-
90
-
-
77954804977
-
2/graphene nanocomposite and their application as anode material for lithium ion battery
-
2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater. Lett. 2010, 64, 2076-2079.
-
(2010)
Mater. Lett.
, vol.64
, pp. 2076-2079
-
-
Du, Z.F.1
Yin, X.M.2
Zhang, M.3
Hao, Q.Y.4
Wang, Y.G.5
Wang, T.H.6
-
92
-
-
79959511053
-
2/graphene composite with high lithium storage capability for lithium rechargeable batteries
-
2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813-821.
-
(2010)
Nano Res.
, vol.3
, pp. 813-821
-
-
Kim, H.1
Kim, S.-W.2
Park, Y.-U.3
Gwon, H.4
Seo, D.-H.5
Kim, Y.6
Kang, K.7
-
94
-
-
67249166128
-
2 nanopowder prepared via a molten salt process: A highly efficient anode material for lithium-ion batteries
-
2 nanopowder prepared via a molten salt process: A highly efficient anode material for lithium-ion batteries. J. Mater. Chem. 2009, 19, 3253-3257.
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 3253-3257
-
-
Guo, Z.P.1
Du, G.D.2
Nuli, Y.N.3
Hassan, M.F.4
Liu, H.K.5
-
95
-
-
77958027956
-
2 nanotubes as high capacity anode materials for lithium ion batteries
-
2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 1383-1386.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1383-1386
-
-
Li, L.M.1
Yin, X.M.2
Liu, S.3
Wang, Y.G.4
Chen, L.B.5
Wang, T.H.6
-
96
-
-
61849114586
-
Facile synthesis of tin oxide nanoflowers: A potential high-capacity lithium-ion-storage material
-
Ning, J. J.; Dai, Q. Q.; Jiang, T.; Men, K. K.; Liu, D. H.; Xiao, N. R.; Li, C. Y.; Li, D. M.; Liu, B. B.; Zou, B.; et al. Facile synthesis of tin oxide nanoflowers: A potential high-capacity lithium-ion-storage material. Langmuir2009, 25, 1818-1821.
-
(2009)
Langmuir
, vol.25
, pp. 1818-1821
-
-
Ning, J.J.1
Dai, Q.Q.2
Jiang, T.3
Men, K.K.4
Liu, D.H.5
Xiao, N.R.6
Li, C.Y.7
Li, D.M.8
Liu, B.B.9
Zou, B.10
-
97
-
-
77951890217
-
2 hollow nanostructures via self-assembly for high power lithium ion batteries
-
2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C2010, 114, 8084-8088.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 8084-8088
-
-
Yin, X.M.1
Li, C.C.2
Zhang, M.3
Hao, Q.Y.4
Liu, S.5
Chen, L.B.6
Wang, T.H.7
-
98
-
-
37349103449
-
Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries
-
Ferguson, P. P.; Todd, A. D. W.; Dahn, J. R. Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries. Electrochem. Commun. 2008, 10, 25-31.
-
(2008)
Electrochem. Commun.
, vol.10
, pp. 25-31
-
-
Ferguson, P.P.1
Todd, A.D.W.2
Dahn, J.R.3
-
99
-
-
69449087979
-
Studies of tin-transition metal-carbon and tin-cobalt-transition metal-carbon negative electrode materials prepared by mechanical attrition
-
Ferguson, P. P.; Martine, M. L.; George, A. E.; Dahn, J. R. Studies of tin-transition metal-carbon and tin-cobalt-transition metal-carbon negative electrode materials prepared by mechanical attrition. J. Power Sources2009, 194, 794-800.
-
(2009)
J. Power Sources
, vol.194
, pp. 794-800
-
-
Ferguson, P.P.1
Martine, M.L.2
George, A.E.3
Dahn, J.R.4
-
100
-
-
62349084823
-
Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries
-
Chen, Z. X.; Qian, J. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries. J. Power Sources2009, 189, 730-732.
-
(2009)
J. Power Sources
, vol.189
, pp. 730-732
-
-
Chen, Z.X.1
Qian, J.F.2
Ai, X.P.3
Cao, Y.L.4
Yang, H.X.5
-
101
-
-
34548402474
-
An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries
-
Hassoun, J.; Panero, S.; Mulas, G.; Scrosati, B. An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries. J. Power Sources2007, 171, 928-931.
-
(2007)
J. Power Sources
, vol.171
, pp. 928-931
-
-
Hassoun, J.1
Panero, S.2
Mulas, G.3
Scrosati, B.4
-
102
-
-
34547939834
-
Spherical Sn-Ni-C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries
-
Guo, H.; Zhao, H. L.; Jia, X. D. Spherical Sn-Ni-C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries. Electrochem. Commun. 2007, 9, 2207-2211.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 2207-2211
-
-
Guo, H.1
Zhao, H.L.2
Jia, X.D.3
-
103
-
-
34447096891
-
Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries
-
Ke, F.-S.; Huang, L.; Cai, J.-S.; Sun, S.-G. Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries. Electrochim. Acta2007, 52, 6741-6747.
-
(2007)
Electrochim. Acta
, vol.52
, pp. 6741-6747
-
-
Ke, F.-S.1
Huang, L.2
Cai, J.-S.3
Sun, S.-G.4
-
104
-
-
84860385499
-
Ti-based compounds as anode materials for Li-ion batteries
-
Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652-6667.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6652-6667
-
-
Zhu, G.-N.1
Wang, Y.-G.2
Xia, Y.-Y.3
-
105
-
-
77955408819
-
Nanostructured anode material for high-power battery system in electric vehicles
-
Amine, K.; Belharouak, I.; Chen, Z. H.; Tran, T.; Yumoto, H.; Ota, N.; Myung, S.-T.; Sun, Y.-K. Nanostructured anode material for high-power battery system in electric vehicles. Adv. Mater. 2010, 22, 3052-3057.
-
(2010)
Adv. Mater.
, vol.22
, pp. 3052-3057
-
-
Amine, K.1
Belharouak, I.2
Chen, Z.H.3
Tran, T.4
Yumoto, H.5
Ota, N.6
Myung, S.-T.7
Sun, Y.-K.8
-
106
-
-
84862537954
-
12 spinel: the full static picture from electron microscopy
-
12 spinel: the full static picture from electron microscopy. Adv. Mater. 2012, 24, 3233-3238.
-
(2012)
Adv. Mater.
, vol.24
, pp. 3233-3238
-
-
Lu, X.1
Zhao, L.2
He, X.Q.3
Xiao, R.J.4
Gu, L.5
Hu, Y.-S.6
Li, H.7
Wang, Z.X.8
Duan, X.F.9
Chen, L.Q.10
-
107
-
-
80053323005
-
12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries
-
12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016-4022.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4016-4022
-
-
Zhu, G.-N.1
Liu, H.-J.2
Zhuang, J.-H.3
Wang, C.-X.4
Wang, Y.-G.5
Xia, Y.-Y.6
-
108
-
-
79953660835
-
12 as ultra high power anode material for lithium batteries
-
12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345-1351.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1345-1351
-
-
Jung, H.-G.1
Myung, S.-T.2
Yoon, C.S.3
Son, S.-B.4
Oh, K.H.5
Amine, K.6
Scrosati, B.7
Sun, Y.-K.8
-
109
-
-
40149102928
-
12/polyacene materials for Li-ion secondary batteries
-
12/polyacene materials for Li-ion secondary batteries. Electrochim. Acta2008, 53, 4200-4204.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 4200-4204
-
-
Yu, H.Y.1
Zhang, X.F.2
Jalbout, A.F.3
Yan, X.D.4
Pan, X.M.5
Xie, H.M.6
Wang, R.S.7
-
110
-
-
72949103243
-
12 as a high rate electrode material for Li-ion intercalation
-
12 as a high rate electrode material for Li-ion intercalation. J. Mater. Chem. 2010, 20, 595-602.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 595-602
-
-
Cheng, L.1
Yan, J.2
Zhu, G.-N.3
Luo, J.-Y.4
Wang, C.-X.5
Xia, Y.-Y.6
-
111
-
-
36148967283
-
12 anode material
-
12 anode material. J. Power Sources2007, 174, 1109-1112.
-
(2007)
J. Power Sources
, vol.174
, pp. 1109-1112
-
-
Wang, G.J.1
Gao, J.2
Fu, L.J.3
Zhao, N.H.4
Wu, Y.P.5
Takamura, T.6
-
115
-
-
33847610018
-
12/C anode material with good rate capability for lithium ion batteries
-
12/C anode material with good rate capability for lithium ion batteries. J. Power Sources2007, 166, 255-259.
-
(2007)
J. Power Sources
, vol.166
, pp. 255-259
-
-
Gao, J.1
Ying, J.R.2
Jiang, C.Y.3
Wan, C.R.4
-
116
-
-
77954176620
-
12 for lithium-ion batteries
-
12 for lithium-ion batteries. Electrochim. Acta2010, 55, 5813-5818.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 5813-5818
-
-
Zhu, N.1
Liu, W.2
Xue, M.Q.3
Xie, Z.4
Zhao, D.5
Zhang, M.N.6
Chen, J.T.7
Cao, T.B.8
-
117
-
-
79951596123
-
12-graphene hybrid nanostructures for high rate lithium ion batteries
-
12-graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale2011, 3, 572-574.
-
(2011)
Nanoscale
, vol.3
, pp. 572-574
-
-
Shen, L.F.1
Yuan, C.Z.2
Luo, H.J.3
Zhang, X.G.4
Yang, S.D.5
Lu, X.J.6
-
122
-
-
84860851918
-
12 anode of a lithium-ion battery
-
12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874-7879.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 7874-7879
-
-
Wang, Y.-Q.1
Gu, L.2
Guo, Y.-G.3
Li, H.4
He, X.-Q.5
Tsukimoto, S.6
Ikuhara, Y.7
Wan, L.-J.8
-
123
-
-
70349267627
-
12 with double surface modification of Ti(III) and carbon
-
12 with double surface modification of Ti(III) and carbon. J. Mater. Chem. 2009, 19, 6789-6795.
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 6789-6795
-
-
Wang, Y.G.1
Liu, H.M.2
Wang, K.X.3
Eiji, H.4
Wang, Y.R.5
Zhou, H.S.6
-
124
-
-
83455186558
-
12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity
-
12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity. Chem. Commun. 2012, 48, 516-518.
-
(2012)
Chem. Commun.
, vol.48
, pp. 516-518
-
-
Song, M.-S.1
Benayad, A.2
Choi, Y.-M.3
Park, K.-S.4
-
125
-
-
80053477855
-
12 thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: Relationships among charge storage, electrical conductivity, and nanoscale structure
-
12 thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: Relationships among charge storage, electrical conductivity, and nanoscale structure. Chem. Mater. 2011, 23, 4384-4393.
-
(2011)
Chem. Mater.
, vol.23
, pp. 4384-4393
-
-
Haetge, J.1
Hartmann, P.2
Brezesinski, K.3
Janek, J.4
Brezesinski, T.5
-
126
-
-
77955508406
-
12 microspheres for high rate lithium ion batteries
-
12 microspheres for high rate lithium ion batteries. J. Mater. Chem. 2010, 20, 6998-7004.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 6998-7004
-
-
Shen, L.F.1
Yuan, C.Z.2
Luo, H.J.3
Zhang, X.G.4
Xu, K.5
Xia, Y.Y.6
-
130
-
-
69249129485
-
12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries
-
12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries. Electrochim. Acta2009, 54, 6244-6249.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 6244-6249
-
-
Tang, Y.F.1
Yang, L.2
Fang, S.H.3
Qiu, Z.4
-
132
-
-
67149113459
-
Carbon nanotubes for lithium ion batteries
-
Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638-654.
-
(2009)
Energy Environ. Sci.
, vol.2
, pp. 638-654
-
-
Landi, B.J.1
Ganter, M.J.2
Cress, C.D.3
DiLeo, R.A.4
Raffaelle, R.P.5
-
133
-
-
54949106202
-
Direct growth of flexible carbon nanotube electrodes
-
Chen, J.; Minett, A. I.; Liu, Y.; Lynam, C.; Sherrell, P.; Wang, C. Y.; Wallace, G. G. Direct growth of flexible carbon nanotube electrodes. Adv. Mater. 2008, 20, 566-570.
-
(2008)
Adv. Mater.
, vol.20
, pp. 566-570
-
-
Chen, J.1
Minett, A.I.2
Liu, Y.3
Lynam, C.4
Sherrell, P.5
Wang, C.Y.6
Wallace, G.G.7
-
134
-
-
34047125834
-
Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries
-
Yang, S. B.; Song, H. H.; Chen, X. H.; Okotrub, A. V.; Bulusheva, L. G. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochim. Acta2007, 52, 5286-5293.
-
(2007)
Electrochim. Acta
, vol.52
, pp. 5286-5293
-
-
Yang, S.B.1
Song, H.H.2
Chen, X.H.3
Okotrub, A.V.4
Bulusheva, L.G.5
-
135
-
-
68749099334
-
Flexible free-standing carbon nanotube films for model lithium-ion batteries
-
Chew, S. Y.; Ng, S. H.; Wang, J. Z.; Novák, P.; Krumeich, F.; Chou, S. L.; Chen, J.; Liu, H. K. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon2009, 47, 2976-2983.
-
(2009)
Carbon
, vol.47
, pp. 2976-2983
-
-
Chew, S.Y.1
Ng, S.H.2
Wang, J.Z.3
Novák, P.4
Krumeich, F.5
Chou, S.L.6
Chen, J.7
Liu, H.K.8
-
136
-
-
77955230632
-
High-power lithium batteries from functionalized carbon-nanotube electrodes
-
Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B.-S.; Hammond, P. T.; Shao-Horn, Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 2010, 5, 531-537.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 531-537
-
-
Lee, S.W.1
Yabuuchi, N.2
Gallant, B.M.3
Chen, S.4
Kim, B.-S.5
Hammond, P.T.6
Shao-Horn, Y.7
-
137
-
-
44449124775
-
Lithium ion capacity of single wall carbon nanotube paper electrodes
-
Landi, B. J.; Ganter, M. J.; Schauerman, C. M.; Cress, C. D.; Raffaelle, R. P. Lithium ion capacity of single wall carbon nanotube paper electrodes. J. Phys. Chem. C2008, 112, 7509-7515.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 7509-7515
-
-
Landi, B.J.1
Ganter, M.J.2
Schauerman, C.M.3
Cress, C.D.4
Raffaelle, R.P.5
-
138
-
-
64549086755
-
Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries
-
Masarapu, C.; Subramanian, V.; Zhu, H. W.; Wei, B. Q. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv. Funct. Mater. 2009, 19, 1008-1014.
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 1008-1014
-
-
Masarapu, C.1
Subramanian, V.2
Zhu, H.W.3
Wei, B.Q.4
-
139
-
-
36849012006
-
Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries
-
Wang, X. X.; Wang, J. N.; Chang, H.; Zhang, Y. F. Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv. Funct. Mater. 2007, 17, 3613-3618.
-
(2007)
Adv. Funct. Mater.
, vol.17
, pp. 3613-3618
-
-
Wang, X.X.1
Wang, J.N.2
Chang, H.3
Zhang, Y.F.4
-
140
-
-
80054824131
-
Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries
-
Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S. M.; Sun, X.-G.; Dai, S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 2011, 23, 4661-4666.
-
(2011)
Adv. Mater.
, vol.23
, pp. 4661-4666
-
-
Guo, B.K.1
Wang, X.Q.2
Fulvio, P.F.3
Chi, M.F.4
Mahurin, S.M.5
Sun, X.-G.6
Dai, S.7
-
141
-
-
65549117455
-
Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries
-
Ji, L. W.; Zhang, X. W. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology2009, 20, 155705-155711.
-
(2009)
Nanotechnology
, vol.20
, pp. 155705-155711
-
-
Ji, L.W.1
Zhang, X.W.2
-
142
-
-
84859713696
-
Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability
-
Qie, L.; Chen, W.-M.; Wang, Z.-H.; Shao, Q.-G.; Li, X.; Yuan, L.-X.; Hu, X.-L.; Zhang, W.-X.; Huang, Y.-H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047-2050.
-
(2012)
Adv. Mater.
, vol.24
, pp. 2047-2050
-
-
Qie, L.1
Chen, W.-M.2
Wang, Z.-H.3
Shao, Q.-G.4
Li, X.5
Yuan, L.-X.6
Hu, X.-L.7
Zhang, W.-X.8
Huang, Y.-H.9
-
143
-
-
54849420957
-
CNFs@CNTs: Superior carbon for electrochemical energy storage
-
Zhang, J.; Hu, Y.-S.; Tessonnier, J.-P.; Weinberg, G.; Maier, J.; Schlögl, R.; Su, D. S. CNFs@CNTs: Superior carbon for electrochemical energy storage. Adv. Mater. 2008, 20, 1450-1455.
-
(2008)
Adv. Mater.
, vol.20
, pp. 1450-1455
-
-
Zhang, J.1
Hu, Y.-S.2
Tessonnier, J.-P.3
Weinberg, G.4
Maier, J.5
Schlögl, R.6
Su, D.S.7
-
144
-
-
37349003842
-
A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries
-
Yang, S. B.; Huo, J. P.; Song, H. H.; Chen, X. H. A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta2008, 53, 2238-2244.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 2238-2244
-
-
Yang, S.B.1
Huo, J.P.2
Song, H.H.3
Chen, X.H.4
-
146
-
-
79952991664
-
An overview of graphene in energy production and storage applications
-
Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E. An overview of graphene in energy production and storage applications. J. Power Sources2011, 196, 4873-4885.
-
(2011)
J. Power Sources
, vol.196
, pp. 4873-4885
-
-
Brownson, D.A.C.1
Kampouris, D.K.2
Banks, C.E.3
-
147
-
-
79953657081
-
Graphene based new energy materials
-
Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113-1132.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1113-1132
-
-
Sun, Y.Q.1
Wu, Q.2
Shi, G.Q.3
-
148
-
-
79952362065
-
Graphene-based nanomaterials for energy storage
-
Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668-674.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 668-674
-
-
Pumera, M.1
-
149
-
-
77955575645
-
Edge effects on the characteristics of Li diffusion in graphene
-
Uthaisar, C.; Barone, V. Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 2010, 10, 2838-2842.
-
(2010)
Nano Lett.
, vol.10
, pp. 2838-2842
-
-
Uthaisar, C.1
Barone, V.2
-
150
-
-
77956423599
-
+ with single-layer and few-layer graphene
-
+ with single-layer and few-layer graphene. Nano Lett. 2010, 10, 3386-3388.
-
(2010)
Nano Lett.
, vol.10
, pp. 3386-3388
-
-
Pollak, E.1
Geng, B.S.2
Jeon, K.-J.3
Lucas, I.T.4
Richardson, T.J.5
Wang, F.6
Kostecki, R.7
-
151
-
-
67651149845
-
Li storage properties of disordered graphene nanosheets
-
Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136-3142.
-
(2009)
Chem. Mater.
, vol.21
, pp. 3136-3142
-
-
Pan, D.Y.1
Wang, S.2
Zhao, B.3
Wu, M.H.4
Zhang, H.J.5
Wang, Y.6
Jiao, Z.7
-
152
-
-
77950049754
-
Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries
-
Lian, P. C.; Zhu, X. F.; Liang, S. Z.; Li, Z.; Yang, W. S.; Wang, H. H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta2010, 55, 3909-3914.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 3909-3914
-
-
Lian, P.C.1
Zhu, X.F.2
Liang, S.Z.3
Li, Z.4
Yang, W.S.5
Wang, H.H.6
-
153
-
-
77956430487
-
Enhanced electrochemical lithium storage by graphene nanoribbons
-
Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 2010, 132, 12556-12558.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 12556-12558
-
-
Bhardwaj, T.1
Antic, A.2
Pavan, B.3
Barone, V.4
Fahlman, B.D.5
-
154
-
-
67349255819
-
Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries
-
Guo, P.; Song, H. H.; Chen, X. H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1320-1324.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 1320-1324
-
-
Guo, P.1
Song, H.H.2
Chen, X.H.3
-
155
-
-
57049185903
-
Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries
-
Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277-2282.
-
(2008)
Nano Lett.
, vol.8
, pp. 2277-2282
-
-
Yoo, E.1
Kim, J.2
Hosono, E.3
Zhou, H.S.4
Kudo, T.5
Honma, I.6
-
156
-
-
67650658822
-
Electrochemical properties of graphene paper electrodes used in lithium batteries
-
Wang, C. Y.; Li, D.; Too, C. O.; Wallace, G. G. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 2009, 21, 2604-2606.
-
(2009)
Chem. Mater.
, vol.21
, pp. 2604-2606
-
-
Wang, C.Y.1
Li, D.2
Too, C.O.3
Wallace, G.G.4
-
157
-
-
77954942930
-
Non-annealed graphene paper as a binder-free anode for lithium-ion batteries
-
Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C2010, 114, 12800-12804.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 12800-12804
-
-
Abouimrane, A.1
Compton, O.C.2
Amine, K.3
Nguyen, S.T.4
-
158
-
-
84863115760
-
Folded structured graphene paper for high performance electrode materials
-
Liu, F.; Song, S. Y.; Xue, D. F.; Zhang, H. J. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089-1094.
-
(2012)
Adv. Mater.
, vol.24
, pp. 1089-1094
-
-
Liu, F.1
Song, S.Y.2
Xue, D.F.3
Zhang, H.J.4
-
159
-
-
77249171254
-
Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage
-
Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q.; Maier, J.; Müllen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838-842.
-
(2010)
Adv. Mater.
, vol.22
, pp. 838-842
-
-
Yang, S.B.1
Feng, X.L.2
Zhi, L.J.3
Cao, Q.4
Maier, J.5
Müllen, K.6
-
160
-
-
78049334738
-
Carbon nanocages with nanographene shell for high-rate lithium ion batteries
-
Wang, K. X.; Li, Z. L.; Wang, Y. G.; Liu, H. M.; Chen, J. S.; Holmes, J.; Zhou, H. S. Carbon nanocages with nanographene shell for high-rate lithium ion batteries. J. Mater. Chem. 2010, 20, 9748-9753.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 9748-9753
-
-
Wang, K.X.1
Li, Z.L.2
Wang, Y.G.3
Liu, H.M.4
Chen, J.S.5
Holmes, J.6
Zhou, H.S.7
-
161
-
-
84859146568
-
Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithiumion batteries
-
Li, G. D.; Xu, L. Q.; Hao, Q.; Wang, M.; Qian, Y. T. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithiumion batteries. RSC Adv. 2012, 2, 284-291.
-
(2012)
RSC Adv.
, vol.2
, pp. 284-291
-
-
Li, G.D.1
Xu, L.Q.2
Hao, Q.3
Wang, M.4
Qian, Y.T.5
-
162
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature2000, 407, 496-469.
-
(2000)
Nature
, vol.407
, pp. 496
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.-M.5
-
163
-
-
77955202927
-
Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles
-
Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729-2742.
-
(2010)
Adv. Mater.
, vol.22
, pp. 2729-2742
-
-
Hao, R.1
Xing, R.J.2
Xu, Z.C.3
Hou, Y.L.4
Gao, S.5
Sun, S.H.6
-
164
-
-
51449112256
-
3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries
-
3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries. J. Power Sources2008, 184, 456-461.
-
(2008)
J. Power Sources
, vol.184
, pp. 456-461
-
-
NuLi, Y.N.1
Zeng, R.2
Zhang, P.3
Guo, Z.P.4
Liu, H.K.5
-
165
-
-
0037255154
-
3
-
3. J. Electrochem. Soc. 2003, 150, A133-A139.
-
(2003)
J. Electrochem. Soc.
, vol.150
-
-
Larcher, D.1
Masquelier, C.2
Bonnin, D.3
Chabre, Y.4
Masson, V.5
Leriche, J.-B.6
Tarascon, J.-M.7
-
166
-
-
35549010298
-
3 nanoflakes as an anode material for Li-ion batteries
-
3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792-2799.
-
(2007)
Adv. Funct. Mater.
, vol.17
, pp. 2792-2799
-
-
Reddy, M.V.1
Yu, T.2
Sow, C.-H.3
Shen, Z.X.4
Lim, C.T.5
Subba Rao, G.V.6
Chowdari, B.V.R.7
-
167
-
-
76449096525
-
Uniform hematite nanocapsules based on an anode material for lithium ion batteries
-
Kim, H. S.; Piao, Y. Z.; Kang, S. H.; Hyeon, T.; Sung, Y.-E. Uniform hematite nanocapsules based on an anode material for lithium ion batteries. Electrochem. Commun. 2010, 12, 382-385.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 382-385
-
-
Kim, H.S.1
Piao, Y.Z.2
Kang, S.H.3
Hyeon, T.4
Sung, Y.-E.5
-
168
-
-
77957130451
-
3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties
-
3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. J. Am. Chem. Soc. 2010, 132, 13162-13164.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13162-13164
-
-
Chen, J.S.1
Zhu, T.2
Yang, X.H.3
Yang, H.G.4
Lou, X.W.5
-
169
-
-
84861053851
-
Hollow iron oxide nanoparticles for application in lithium ion batteries
-
Koo, B.; Xiong, H.; Slater, M. D.; Prakapenka, V. B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012, 12, 2429-2435.
-
(2012)
Nano Lett.
, vol.12
, pp. 2429-2435
-
-
Koo, B.1
Xiong, H.2
Slater, M.D.3
Prakapenka, V.B.4
Balasubramanian, M.5
Podsiadlo, P.6
Johnson, C.S.7
Rajh, T.8
Shevchenko, E.V.9
-
170
-
-
74949093125
-
Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: Large-area design and reversible lithium storage
-
Liu, J. P.; Li, Y. Y.; Fan, H. J.; Zhu, Z. H.; Jiang, J.; Ding, R. M.; Hu, Y. Y.; Huang, X. T. Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: Large-area design and reversible lithium storage. Chem. Mater. 2010, 22, 212-217.
-
(2010)
Chem. Mater.
, vol.22
, pp. 212-217
-
-
Liu, J.P.1
Li, Y.Y.2
Fan, H.J.3
Zhu, Z.H.4
Jiang, J.5
Ding, R.M.6
Hu, Y.Y.7
Huang, X.T.8
-
172
-
-
84862833196
-
4 nanospheres with carbon matrix support for improved lithium storage capabilities
-
4 nanospheres with carbon matrix support for improved lithium storage capabilities. ACS Appl. Mater. Interfaces2011, 3, 3276-3279.
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 3276-3279
-
-
Chen, J.S.1
Zhang, Y.M.2
Lou, X.W.3
-
177
-
-
80054810286
-
4/C spheres as superior lithium storage materials
-
4/C spheres as superior lithium storage materials. J. Power Sources2012, 197, 305-309.
-
(2012)
J. Power Sources
, vol.197
, pp. 305-309
-
-
Zhang, Q.M.1
Shi, Z.C.2
Deng, Y.F.3
Zheng, J.4
Liu, G.C.5
Chen, G.H.6
-
179
-
-
77957061092
-
4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries
-
4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306-5313.
-
(2010)
Chem. Mater.
, vol.22
, pp. 5306-5313
-
-
Zhou, G.M.1
Wang, D.-W.2
Li, F.3
Zhang, L.L.4
Li, N.5
Wu, Z.-S.6
Wen, L.7
Lu, G.Q.8
Cheng, H.-M.9
-
180
-
-
79952532177
-
4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries
-
4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. Eur. J. 2011, 17, 661-667.
-
(2011)
Chem. Eur. J.
, vol.17
, pp. 661-667
-
-
Wang, J.-Z.1
Zhong, C.2
Wexler, D.3
Idris, N.H.4
Wang, Z.-X.5
Chen, L.-Q.6
Liu, H.-K.7
-
181
-
-
78449284350
-
4-graphene nanocomposite as an anode material for lithium-ion batteries
-
4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta2010, 56, 834-840.
-
(2010)
Electrochim. Acta
, vol.56
, pp. 834-840
-
-
Lian, P.C.1
Zhu, X.F.2
Xiang, H.F.3
Li, Z.4
Yang, W.S.5
Wang, H.H.6
-
182
-
-
79961069864
-
4-graphene nanocomposites with improved lithium-storage and magnetism properties
-
4-graphene nanocomposites with improved lithium-storage and magnetism properties. J. Phys. Chem. C2011, 115, 14469-14477.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 14469-14477
-
-
Su, J.1
Cao, M.H.2
Ren, L.3
Hu, C.W.4
-
183
-
-
80455126107
-
4/graphene composites with high lithium storage capacity and for controlled drug delivery
-
4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C2011, 115, 21567-21573.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 21567-21573
-
-
Li, X.Y.1
Huang, X.L.2
Liu, D.P.3
Wang, X.4
Song, S.Y.5
Zhou, L.6
Zhang, H.J.7
-
184
-
-
79960985557
-
4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells
-
4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 2011, 13, 7170-7177.
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 7170-7177
-
-
Ji, L.W.1
Tan, Z.K.2
Kuykendall, T.R.3
Aloni, S.4
Xun, S.5
Lin, E.6
Battaglia, V.7
Zhang, Y.G.8
-
185
-
-
80052516805
-
4-carbon-rGO three dimensional composite in lithium ion batteries
-
4-carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374-10376.
-
(2011)
Chem. Commun.
, vol.47
, pp. 10374-10376
-
-
Li, B.J.1
Cao, H.Q.2
Shao, J.3
Qu, M.Z.4
-
186
-
-
77953165476
-
4/SWNT electrode: Binder-free and high-rate Li-ion anode
-
4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145-E149.
-
(2010)
Adv. Mater.
, vol.22
-
-
Ban, C.M.1
Wu, Z.C.2
Gillaspie, D.T.3
Chen, L.4
Yan, Y.F.5
Blackburn, J.L.6
Dillon, A.C.7
-
187
-
-
77950917663
-
4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance
-
4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. J. Power Sources2010, 195, 5379-5381.
-
(2010)
J. Power Sources
, vol.195
, pp. 5379-5381
-
-
Wang, S.Q.1
Zhang, J.Y.2
Chen, C.H.3
-
189
-
-
38749085606
-
4 nanowire arrays for lithium ion batteries with high capacity and rate capability
-
4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265-270.
-
(2008)
Nano Lett.
, vol.8
, pp. 265-270
-
-
Li, Y.G.1
Tan, B.2
Wu, Y.Y.3
-
192
-
-
37549043897
-
12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications
-
12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505-4509.
-
(2007)
Adv. Mater.
, vol.19
, pp. 4505-4509
-
-
Du, N.1
Zhang, H.2
Chen, B.D.3
Wu, J.B.4
Ma, X.Y.5
Liu, Z.H.6
Zhang, Y.Q.7
Yang, D.R.8
Huang, X.H.9
Tu, J.P.10
-
195
-
-
77249086118
-
4 nanobelts with optimizable electrochemical performance
-
4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 2010, 20, 617-623.
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 617-623
-
-
Tian, L.1
Zou, H.L.2
Fu, J.X.3
Yang, X.F.4
Wang, Y.5
Guo, H.L.6
Fu, X.H.7
Liang, C.L.8
Wu, M.M.9
Shen, P.K.10
-
196
-
-
66749089277
-
4 nanosheets with extraordinarily high discharge capacity for lithium batteries
-
4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem. Eur. J. 2009, 15, 6169-6174.
-
(2009)
Chem. Eur. J.
, vol.15
, pp. 6169-6174
-
-
Zhan, F.M.1
Geng, B.Y.2
Guo, Y.J.3
-
197
-
-
77952703662
-
4 nanosheet-assembled multishelled hollow spheres
-
4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680-1686.
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 1680-1686
-
-
Wang, X.1
Wu, X.-L.2
Guo, Y.-G.3
Zhong, Y.T.4
Cao, X.Q.5
Ma, Y.6
Yao, J.N.7
-
198
-
-
70149094639
-
4 octahedral cages with tunable surface aperture and their lithium storage properties
-
4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C2009, 113, 15553-15558.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 15553-15558
-
-
Wang, X.1
Yu, L.J.2
Wu, X.-L.3
Yuan, F.L.4
Guo, Y.-G.5
Ma, Y.6
Yao, J.N.7
-
199
-
-
78049330007
-
4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries
-
4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735-9739.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 9735-9739
-
-
Chen, S.Q.1
Wang, Y.2
-
200
-
-
79952253431
-
4@graphene composites as anode materials for high-performance lithium ion batteries
-
4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg. Chem. 2011, 50, 1628-1632.
-
(2011)
Inorg. Chem.
, vol.50
, pp. 1628-1632
-
-
Li, B.J.1
Cao, H.Q.2
Shao, J.3
Li, G.Q.4
Qu, M.Z.5
Yin, G.6
-
201
-
-
79955372254
-
Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes
-
Zhu, J. X.; Sharma, Y. K.; Zeng, Z. Y.; Zhang, X. J.; Srinivasan, M.; Mhaisalkar, S.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C2011, 115, 8400-8406.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 8400-8406
-
-
Zhu, J.X.1
Sharma, Y.K.2
Zeng, Z.Y.3
Zhang, X.J.4
Srinivasan, M.5
Mhaisalkar, S.6
Zhang, H.7
Hng, H.H.8
Yan, Q.Y.9
-
202
-
-
77955875714
-
4 nanoparticles as anode of lithium ion capacity and cyclic performance
-
4 nanoparticles as anode of lithium ion capacity and cyclic performance. ACS Nano2010, 4, 3187-3194.
-
(2010)
ACS Nano
, vol.4
, pp. 3187-3194
-
-
Wu, Z.-S.1
Ren, W.C.2
Wen, L.3
Gao, L.B.4
Zhao, J.P.5
Chen, Z.P.6
Zhou, G.M.7
Li, F.8
Cheng, H.-M.9
-
204
-
-
78650414656
-
4 nanowire array electrodes
-
4 nanowire array electrodes. Nano Res. 2010, 3, 895-901.
-
(2010)
Nano Res.
, vol.3
, pp. 895-901
-
-
Cheng, H.1
Lu, Z.G.2
Deng, J.Q.3
Chung, C.Y.4
Zhang, K.L.5
Li, Y.Y.6
-
205
-
-
79959850715
-
NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries
-
Wang, X. H.; Yang, Z. B.; Sun, X. L.; Li, X. W.; Wang, D. S.; Wang, P.; He, D. Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988-9990.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 9988-9990
-
-
Wang, X.H.1
Yang, Z.B.2
Sun, X.L.3
Li, X.W.4
Wang, D.S.5
Wang, P.6
He, D.Y.7
-
207
-
-
74149087513
-
MnO powder as anode active materials for lithium ion batteries
-
Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources2010, 195, 3300-3308.
-
(2010)
J. Power Sources
, vol.195
, pp. 3300-3308
-
-
Zhong, K.F.1
Xia, X.2
Zhang, B.3
Li, H.4
Wang, Z.X.5
Chen, L.Q.6
-
208
-
-
84864480218
-
Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries
-
Xu, G.-L.; Xu, Y.-F.; Sun, H.; Fu, F.; Zheng, X.-M.; Huang, L.; Li, J.-T.; Yang, S.-H.; Sun, S.-G. Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem. Commun. 2012, 48, 8502-8504.
-
(2012)
Chem. Commun.
, vol.48
, pp. 8502-8504
-
-
Xu, G.-L.1
Xu, Y.-F.2
Sun, H.3
Fu, F.4
Zheng, X.-M.5
Huang, L.6
Li, J.-T.7
Yang, S.-H.8
Sun, S.-G.9
-
211
-
-
77955492926
-
2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries
-
2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6896-6902.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 6896-6902
-
-
Xia, H.1
Lai, M.2
Lu, L.3
-
212
-
-
62849084964
-
Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries
-
Ji, L. W.; Zhang, X. W. Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochem. Commun. 2009, 11, 795-798.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 795-798
-
-
Ji, L.W.1
Zhang, X.W.2
-
213
-
-
77957714684
-
4-graphene hybrid as a high-capacity anode material for lithium ion batteries
-
4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13978-13980
-
-
Wang, H.L.1
Cui, L.-F.2
Yang, Y.3
Sanchez Casalongue, H.4
Robinson, J.T.5
Liang, Y.Y.6
Cui, Y.7
Dai, H.J.8
-
214
-
-
45749147394
-
Fabrication of NiO nanowall electrodes for high performance lithium ion battery
-
Varghese, B.; Reddy, M. V.; Yanwu, Z.; Lit, C. S.; Hoong, T. C.; Subba Rao, G. V.; Chowdari, B. V. R.; Wee, A. T. S.; Lim, C. T.; Sow, C.-H. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 2008, 20, 3360-3367.
-
(2008)
Chem. Mater.
, vol.20
, pp. 3360-3367
-
-
Varghese, B.1
Reddy, M.V.2
Yanwu, Z.3
Lit, C.S.4
Hoong, T.C.5
Subba Rao, G.V.6
Chowdari, B.V.R.7
Wee, A.T.S.8
Lim, C.T.9
Sow, C.-H.10
-
215
-
-
79952256394
-
Nanostructured NiO electrode for high rate Li-ion batteries
-
Wang, X. H.; Li, X. W.; Sun, X. L.; Li, F.; Liu, Q. M.; Wang, Q.; He, D. Y. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem. 2011, 21, 3571-3573.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 3571-3573
-
-
Wang, X.H.1
Li, X.W.2
Sun, X.L.3
Li, F.4
Liu, Q.M.5
Wang, Q.6
He, D.Y.7
-
216
-
-
84865801575
-
Improved electrochemical properties of single crystalline NiO nanoflakes for lithium storage and oxygen electroreduction
-
Ci, S. Q.; Zou, J. P.; Zeng, G. S.; Peng, Q.; Luo, S. L.; Wen, Z. H. Improved electrochemical properties of single crystalline NiO nanoflakes for lithium storage and oxygen electroreduction. RSC Adv. 2012, 2, 5185-5192.
-
(2012)
RSC Adv.
, vol.2
, pp. 5185-5192
-
-
Ci, S.Q.1
Zou, J.P.2
Zeng, G.S.3
Peng, Q.4
Luo, S.L.5
Wen, Z.H.6
-
217
-
-
79956340872
-
Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries
-
Mai, Y. J.; Tu, J. P.; Xia, X. H.; Gu, C. D.; Wang, X. L. Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries. J. Power Sources2011, 196, 6388-6393.
-
(2011)
J. Power Sources
, vol.196
, pp. 6388-6393
-
-
Mai, Y.J.1
Tu, J.P.2
Xia, X.H.3
Gu, C.D.4
Wang, X.L.5
-
218
-
-
84860381393
-
Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage
-
Zhou, G. M.; Wang, D.-W.; Yin, L.-C.; Li, N.; Li, F.; Cheng, H.-M. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano2012, 6, 3214-3223.
-
(2012)
ACS Nano
, vol.6
, pp. 3214-3223
-
-
Zhou, G.M.1
Wang, D.-W.2
Yin, L.-C.3
Li, N.4
Li, F.5
Cheng, H.-M.6
-
219
-
-
84863011248
-
Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage
-
Huang, Y.; Huang, X.-L.; Lian, J.-S; Xu, D.; Wang, L.-M.; Zhang, X.-B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844-2847.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 2844-2847
-
-
Huang, Y.1
Huang, X.-L.2
Lian, J.-S.3
Xu, D.4
Wang, L.-M.5
Zhang, X.-B.6
-
220
-
-
79952993300
-
Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties
-
Xu, C. H.; Sun, J.; Gao, L. Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties. J. Power Sources2011, 196, 5138-5142.
-
(2011)
J. Power Sources
, vol.196
, pp. 5138-5142
-
-
Xu, C.H.1
Sun, J.2
Gao, L.3
-
221
-
-
79951631306
-
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
-
Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046-3052.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 3046-3052
-
-
Liu, H.1
Wang, G.X.2
Liu, J.3
Qiao, S.Z.4
Ahn, H.5
-
222
-
-
84863919426
-
Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage
-
Chen, X.; Zhang, N. Q.; Sun, K. N. Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage. J. Mater. Chem. 2012, 22, 15080-15084.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 15080-15084
-
-
Chen, X.1
Zhang, N.Q.2
Sun, K.N.3
-
223
-
-
84861321696
-
Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries
-
Wang, L. L.; Cheng, W.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian, Y. T. Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 11297-11302.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 11297-11302
-
-
Wang, L.L.1
Cheng, W.2
Gong, H.X.3
Wang, C.H.4
Wang, D.K.5
Tang, K.B.6
Qian, Y.T.7
-
224
-
-
80052968368
-
Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries
-
Wang, F.; Tao, W. Z.; Zhao, M. S.; Xu, M. W.; Yang, S. C.; Sun, Z. B.; Wang, L. Q.; Song, X. P. Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries. J. Alloys Compd. 2011, 509, 9798-9803.
-
(2011)
J. Alloys Compd.
, vol.509
, pp. 9798-9803
-
-
Wang, F.1
Tao, W.Z.2
Zhao, M.S.3
Xu, M.W.4
Yang, S.C.5
Sun, Z.B.6
Wang, L.Q.7
Song, X.P.8
-
225
-
-
65249135603
-
Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries
-
Chen, L. B.; Lu, N.; Xu, C. M.; Yu, H. C.; Wang, T. H. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim. Acta2009, 54, 4198-4201.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 4198-4201
-
-
Chen, L.B.1
Lu, N.2
Xu, C.M.3
Yu, H.C.4
Wang, T.H.5
-
226
-
-
67649205095
-
One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance
-
Ke, F.-S.; Huang, L.; Wei, G.-Z.; Xue, L.-J.; Li, J.-T.; Zhang, B.; Chen, S.-R.; Fan, X.-Y.; Sun, S.-G. One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta2009, 54, 5825-5829.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 5825-5829
-
-
Ke, F.-S.1
Huang, L.2
Wei, G.-Z.3
Xue, L.-J.4
Li, J.-T.5
Zhang, B.6
Chen, S.-R.7
Fan, X.-Y.8
Sun, S.-G.9
-
227
-
-
84862516874
-
Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties
-
Chen, X.; Zhang, N. Q.; Sun, K. N. Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J. Mater. Chem. 2012, 22, 13637-13642.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 13637-13642
-
-
Chen, X.1
Zhang, N.Q.2
Sun, K.N.3
-
228
-
-
79953730785
-
CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage
-
Wang, Z. Y.; Su, F. B.; Madhavi, S.; Lou, X. W. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale2011, 3, 1618-1623.
-
(2011)
Nanoscale
, vol.3
, pp. 1618-1623
-
-
Wang, Z.Y.1
Su, F.B.2
Madhavi, S.3
Lou, X.W.4
-
229
-
-
34047120616
-
Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries
-
Wang, H. B.; Pan, Q. M.; Zhao, J. W.; Yin, G. P.; Zuo, P. J. Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries. J. Power Sources2007, 167, 206-211.
-
(2007)
J. Power Sources
, vol.167
, pp. 206-211
-
-
Wang, H.B.1
Pan, Q.M.2
Zhao, J.W.3
Yin, G.P.4
Zuo, P.J.5
-
231
-
-
78649354626
-
Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries
-
Wang, B.; Wu, X.-L.; Shu, C.-Y.; Guo, Y.-G.; Wang, C.-R. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2010, 20, 10661-10664.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 10661-10664
-
-
Wang, B.1
Wu, X.-L.2
Shu, C.-Y.3
Guo, Y.-G.4
Wang, C.-R.5
-
232
-
-
79551572427
-
CuO/graphene composite as anode materials for lithium-ion batteries
-
Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. P. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta2011, 56, 2306-2311.
-
(2011)
Electrochim. Acta
, vol.56
, pp. 2306-2311
-
-
Mai, Y.J.1
Wang, X.L.2
Xiang, J.Y.3
Qiao, Y.Q.4
Zhang, D.5
Gu, C.D.6
Tu, J.P.7
-
233
-
-
80455176612
-
Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities
-
Lu, L. Q.; Wang, Y. Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. J. Mater. Chem. 2011, 21, 17916-17921.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 17916-17921
-
-
Lu, L.Q.1
Wang, Y.2
-
234
-
-
84864991204
-
Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes
-
Ko, S.; Lee, J.-I.; Yang, H. S.; Park, S.; Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater. 2012, 24, 4451-4456.
-
(2012)
Adv. Mater.
, vol.24
, pp. 4451-4456
-
-
Ko, S.1
Lee, J.-I.2
Yang, H.S.3
Park, S.4
Jeong, U.5
-
235
-
-
77955309863
-
Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage
-
Xiang, J. Y.; Tu, J. P.; Zhang, J.; Zhong, J.; Zhang, D.; Cheng, J. P. Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochem. Commun. 2010, 12, 1103-1107.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1103-1107
-
-
Xiang, J.Y.1
Tu, J.P.2
Zhang, J.3
Zhong, J.4
Zhang, D.5
Cheng, J.P.6
-
236
-
-
61449088332
-
Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries
-
Wang, H. B.; Pan, Q. M.; Cheng, Y. X.; Zhao, J. W.; Yin, G. P. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta2009, 54, 2851-2855.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 2851-2855
-
-
Wang, H.B.1
Pan, Q.M.2
Cheng, Y.X.3
Zhao, J.W.4
Yin, G.P.5
-
237
-
-
79956337559
-
Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries
-
Huang, X. H.; Xia, X. H.; Yuan, Y. F.; Zhou, F. Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta2011, 56, 4960-4965.
-
(2011)
Electrochim. Acta
, vol.56
, pp. 4960-4965
-
-
Huang, X.H.1
Xia, X.H.2
Yuan, Y.F.3
Zhou, F.4
-
238
-
-
65249187727
-
Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability
-
Liu, J. P.; Li, Y. Y.; Ding, R. M.; Jiang, J.; Hu, Y. Y.; Ji, X. X.; Chi, Q. B.; Zhu, Z. H.; Huang, X. T. Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J. Phys. Chem. C2009, 113, 5336-5339.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 5336-5339
-
-
Liu, J.P.1
Li, Y.Y.2
Ding, R.M.3
Jiang, J.4
Hu, Y.Y.5
Ji, X.X.6
Chi, Q.B.7
Zhu, Z.H.8
Huang, X.T.9
-
239
-
-
79956266433
-
Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes
-
Ahmad, M.; Yingying, S.; Nisar, A.; Sun, H. Y; Shen, W. C.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723-7729.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 7723-7729
-
-
Ahmad, M.1
Yingying, S.2
Nisar, A.3
Sun, H.Y.4
Shen, W.C.5
Wei, M.6
Zhu, J.7
-
240
-
-
33846222016
-
Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries
-
Zhang, C. Q.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Chen, X. T.; Mao, F. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J. Electrochem. Soc. 2007, 154, A65-A69.
-
(2007)
J. Electrochem. Soc.
, vol.154
-
-
Zhang, C.Q.1
Tu, J.P.2
Yuan, Y.F.3
Huang, X.H.4
Chen, X.T.5
Mao, F.6
-
241
-
-
71949124253
-
2 materials with highly reversible lithium storage capacity
-
2 materials with highly reversible lithium storage capacity. Nano Lett. 2009, 9, 4215-4220.
-
(2009)
Nano Lett.
, vol.9
, pp. 4215-4220
-
-
Shi, Y.F.1
Guo, B.K.2
Corr, S.A.3
Shi, Q.H.4
Hu, Y.-S.5
Heier, K.R.6
Chen, L.Q.7
Seshadri, R.8
Stucky, G.D.9
-
242
-
-
79961013113
-
2 nanoarchitecture as a binder-free anode for lithium-ion batteries
-
2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2870-2877.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2870-2877
-
-
Sun, Y.M.1
Hu, X.L.2
Yu, J.C.3
Li, Q.4
Luo, W.5
Yuan, L.X.6
Zhang, W.X.7
Huang, Y.H.8
-
245
-
-
84857715095
-
2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries
-
2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces2011, 3, 4853-4857.
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 4853-4857
-
-
Zhou, L.1
Wu, H.B.2
Wang, Z.Y.3
Lou, X.W.4
-
246
-
-
54949083023
-
Reversible lithium-ion insertion in molybdenum oxide nanoparticles
-
Lee, S.-H.; Kim, Y.-H.; Deshpande, R.; Parilla, P. A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A. H.; Zhang, S. B.; Dillon, A. C. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 2008, 20, 3627-3632.
-
(2008)
Adv. Mater.
, vol.20
, pp. 3627-3632
-
-
Lee, S.-H.1
Kim, Y.-H.2
Deshpande, R.3
Parilla, P.A.4
Whitney, E.5
Gillaspie, D.T.6
Jones, K.M.7
Mahan, A.H.8
Zhang, S.B.9
Dillon, A.C.10
-
252
-
-
79958024284
-
2 thin films composed of nanosize compounds synthesized via nanosheet restacking method
-
2 thin films composed of nanosize compounds synthesized via nanosheet restacking method. J. Power Sources2011, 196, 6762-6767.
-
(2011)
J. Power Sources
, vol.196
, pp. 6762-6767
-
-
Quan, Z.1
Iwase, K.2
Sonoyama, N.3
-
254
-
-
84862663517
-
2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries
-
2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395-401.
-
(2012)
Nano Res.
, vol.5
, pp. 395-401
-
-
Xiao, X.L.1
Liu, X.F.2
Wang, L.3
Zhao, H.4
Hu, Z.B.5
He, X.M.6
Li, Y.D.7
-
255
-
-
84861665165
-
2 for electrode materials of high-power Li-ion batteries
-
2 for electrode materials of high-power Li-ion batteries. J. Phys. Chem. C2012, 116, 10774-10780.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 10774-10780
-
-
Mizuno, Y.1
Hosono, E.2
Saito, T.3
Okubo, M.4
Nishio-Hamane, D.5
Oh-Ishi, K.6
Kudo, T.7
Zhou, H.S.8
-
257
-
-
84860344545
-
2/carbon nanotube cathodes for high-performance lithium ion batteries
-
2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294-2298.
-
(2012)
Adv. Mater.
, vol.24
, pp. 2294-2298
-
-
Luo, S.1
Wang, K.2
Wang, J.P.3
Jiang, K.L.4
Li, Q.Q.5
Fan, S.S.6
-
258
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature2001, 414, 359-367.
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.-M.1
Armand, M.2
-
259
-
-
78149430850
-
Role of surface coating on cathode materials for lithium-ion batteries
-
Chen, Z. H.; Qin, Y.; Amine, K.; Sun, Y.-K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 7606-7612.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 7606-7612
-
-
Chen, Z.H.1
Qin, Y.2
Amine, K.3
Sun, Y.-K.4
-
260
-
-
80053262746
-
2: Synthesis, improved cycling stability and good performance at high rates
-
2: Synthesis, improved cycling stability and good performance at high rates. Electrochim. Acta2011, 56, 9027-9031.
-
(2011)
Electrochim. Acta
, vol.56
, pp. 9027-9031
-
-
Hao, Q.1
Ma, H.Y.2
Ju, Z.C.3
Li, G.D.4
Li, X.W.5
Xu, L.Q.6
Qian, Y.T.7
-
262
-
-
79851498884
-
2 for Li-ion vehicular applications
-
2 for Li-ion vehicular applications. Nano Lett. 2011, 11, 414-418.
-
(2011)
Nano Lett.
, vol.11
, pp. 414-418
-
-
Scott, I.D.1
Jung, Y.S.2
Cavanagh, A.S.3
Yan, Y.F.4
Dillon, A.C.5
George, S.M.6
Lee, S.-H.7
-
263
-
-
84859772487
-
2 electrodes
-
2 electrodes. J. Phys. Chem. C2012, 116, 7629-7637.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 7629-7637
-
-
Cheng, H.-M.1
Wang, F.-M.2
Chu, J.P.3
Santhanam, R.4
Rick, J.5
Lo, S.-C.6
-
264
-
-
79955695277
-
Who will drive electric vehicles, olivine or spinel?
-
Park, O. K.; Cho, Y.; Lee, S.; Yoo, H.-C.; Song, H.-K.; Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011, 4, 1621-1633.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1621-1633
-
-
Park, O.K.1
Cho, Y.2
Lee, S.3
Yoo, H.-C.4
Song, H.-K.5
Cho, J.6
-
266
-
-
46749091609
-
2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries
-
2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J. Power Sources2008, 183, 366-369.
-
(2008)
J. Power Sources
, vol.183
, pp. 366-369
-
-
Kim, J.-H.1
Ayalasomayajula, T.2
Gona, V.3
Choi, D.4
-
267
-
-
77958073750
-
4 nanowires as high power cathode materials for Li-ion batteries
-
4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852-3856.
-
(2010)
Nano Lett.
, vol.10
, pp. 3852-3856
-
-
Lee, H.-W.1
Muralidharan, P.2
Ruffo, R.3
Mari, C.M.4
Cui, Y.5
Kim, D.K.6
-
268
-
-
49649115023
-
4 nanorods, nanothorn microspheres,^and hollow nanospheres as enhanced cathode materials of lithium ion battery
-
4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. C2008, 112, 12051-12057.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 12051-12057
-
-
Luo, J.-Y.1
Xiong, H.-M.2
Xia, Y.-Y.3
-
270
-
-
71949119135
-
4
-
4. Nano Lett. 2009, 9, 4109-4114.
-
(2009)
Nano Lett.
, vol.9
, pp. 4109-4114
-
-
Yang, Y.1
Xie, C.2
Ruffo, R.3
Peng, H.L.4
Kim, D.K.5
Cui, Y.6
-
271
-
-
58149311456
-
4 nanorods as lithium ion battery cathodes
-
4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948-3952.
-
(2008)
Nano Lett.
, vol.8
, pp. 3948-3952
-
-
Kim, D.K.1
Muralidharan, P.2
Lee, H.-W.3
Ruffo, R.4
Yang, Y.5
Chan, C.K.6
Peng, H.L.7
Huggins, R.A.8
Cui, Y.9
-
272
-
-
43449089794
-
4 nanorod clusters for lithium battery cathode materials
-
4 nanorod clusters for lithium battery cathode materials. J. Mater. Chem. 2008, 18, 2257-2261.
-
(2008)
J. Mater. Chem.
, vol.18
, pp. 2257-2261
-
-
Cho, J.1
-
273
-
-
78650690272
-
4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries
-
4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater. 2011, 21, 348-355.
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 348-355
-
-
Ding, Y.-L.1
Xie, J.2
Cao, G.-S.3
Zhu, T.-J.4
Yu, H.-M.5
Zhao, X.-B.6
-
274
-
-
52649165112
-
4 spinel electrode exhibiting high power and stable cycling
-
4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 2008, 20, 5557-5562.
-
(2008)
Chem. Mater.
, vol.20
, pp. 5557-5562
-
-
Shaju, K.M.1
Bruce, P.G.2
-
275
-
-
77649153816
-
4 without domain boundaries
-
4 without domain boundaries. ACS Nano2010, 4, 741-752.
-
(2010)
ACS Nano
, vol.4
, pp. 741-752
-
-
Okubo, M.1
Mizuno, Y.2
Yamada, H.3
Kim, J.4
Hosono, E.5
Zhou, H.S.6
Kudo, T.7
Honma, I.8
-
276
-
-
80755171158
-
4 as cathode material of high rate capability for lithium ion batteries
-
4 as cathode material of high rate capability for lithium ion batteries. J. Power Sources2012, 198, 308-311.
-
(2012)
J. Power Sources
, vol.198
, pp. 308-311
-
-
Tang, W.1
Wang, X.J.2
Hou, Y.Y.3
Li, L.L.4
Sun, H.5
Zhu, Y.S.6
Bai, Y.7
Wu, Y.P.8
Zhu, K.9
van Ree, T.10
-
277
-
-
57049175908
-
Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries
-
Jiao, F.; Bao, J. L.; Hill, A. H.; Bruce, P. G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 9711-9716.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 9711-9716
-
-
Jiao, F.1
Bao, J.L.2
Hill, A.H.3
Bruce, P.G.4
-
278
-
-
49249117191
-
Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries
-
Tonti, D.; Torralvo, M. J.; Enciso, E.; Sobrados, I.; Sanz, J. Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries. Chem. Mater. 2008, 20, 4783-4790.
-
(2008)
Chem. Mater.
, vol.20
, pp. 4783-4790
-
-
Tonti, D.1
Torralvo, M.J.2
Enciso, E.3
Sobrados, I.4
Sanz, J.5
-
279
-
-
0020735988
-
Lithium insertion into manganese spinels
-
Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461-472.
-
(1983)
Mater. Res. Bull.
, vol.18
, pp. 461-472
-
-
Thackeray, M.M.1
David, W.I.F.2
Bruce, P.G.3
Goodenough, J.B.4
-
282
-
-
84861589097
-
3
-
3. Mater. Lett. 2012, 78, 116-119.
-
(2012)
Mater. Lett.
, vol.78
, pp. 116-119
-
-
Feng, L.J.1
Wang, S.P.2
Han, L.3
Qin, X.Y.4
Wei, H.Y.5
Yang, Y.Z.6
-
284
-
-
53649109244
-
4 synthesized by a polymer-pyrolysis method
-
4 synthesized by a polymer-pyrolysis method. Electrochim. Acta2008, 54, 545-550.
-
(2008)
Electrochim. Acta
, vol.54
, pp. 545-550
-
-
Xiao, L.F.1
Zhao, Y.Q.2
Yang, Y.Y.3
Cao, Y.L.4
Ai, X.P.5
Yang, H.X.6
-
285
-
-
0000478193
-
2 as an electrode for rechargeable lithium batteries
-
2 as an electrode for rechargeable lithium batteries. Nature1996, 381, 499-500.
-
(1996)
Nature
, vol.381
, pp. 499-500
-
-
Armstrong, A.R.1
Bruce, P.G.2
-
288
-
-
74049097515
-
2 nanorods and comparison of their electrochemical performances
-
2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923-930.
-
(2009)
Nano Res.
, vol.2
, pp. 923-930
-
-
Xiao, X.L.1
Wang, L.2
Wang, D.S.3
He, X.M.4
Peng, Q.5
Li, Y.D.6
-
289
-
-
76149091581
-
Influence of size on the rate of mesoporous electrodes for lithium batteries
-
Ren, Y.; Armstrong, A. R.; Jiao, F.; Bruce, P. G. Influence of size on the rate of mesoporous electrodes for lithium batteries. J. Am. Chem. Soc. 2010, 132, 996-1004.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 996-1004
-
-
Ren, Y.1
Armstrong, A.R.2
Jiao, F.3
Bruce, P.G.4
-
290
-
-
48049086772
-
2 for Li ion battery application
-
2 for Li ion battery application. Electrochim. Acta2008, 53, 7298-7302.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 7298-7302
-
-
Liu, Q.1
Li, Y.X.2
Hu, Z.L.3
Mao, D.L.4
Chang, C.K.5
Huang, F.Q.6
-
294
-
-
40149090269
-
High voltage nickel manganese spinel oxides for Li-ion batteries
-
Patoux, S.; Sannier, L.; Lignier, H.; Reynier, Y.; Bourbon, C.; Jouanneau, S.; Le Cras, F.; Martinet, S. High voltage nickel manganese spinel oxides for Li-ion batteries. Electrochim. Acta2008, 53, 4137-4145.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 4137-4145
-
-
Patoux, S.1
Sannier, L.2
Lignier, H.3
Reynier, Y.4
Bourbon, C.5
Jouanneau, S.6
Le Cras, F.7
Martinet, S.8
-
295
-
-
38349107626
-
4 cathode materials synthesized by different methods
-
4 cathode materials synthesized by different methods. Electrochim. Acta2008, 53, 3120-3126.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 3120-3126
-
-
Yi, T.-F.1
Zhu, Y.-R.2
-
300
-
-
24344466148
-
4 (M = Li, Mg, Fe, Co, and Zn)
-
4 (M = Li, Mg, Fe, Co, and Zn). Electrochem. Solid-State Lett. 2005, 8, A403-A405.
-
(2005)
Electrochem. Solid-State Lett.
, vol.8
-
-
Arunkumar, T.A.1
Manthiram, A.2
-
303
-
-
66149131888
-
4 spinel cathodes in lithium-ion cells
-
4 spinel cathodes in lithium-ion cells. Chem. Mater. 2009, 21, 1695-1707.
-
(2009)
Chem. Mater.
, vol.21
, pp. 1695-1707
-
-
Liu, J.1
Manthiram, A.2
-
304
-
-
79952274296
-
An advanced lithium ion battery based on high performance electrode materials
-
Hassoun, J.; Lee, K.-S.; Sun, Y.-K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139-3143.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 3139-3143
-
-
Hassoun, J.1
Lee, K.-S.2
Sun, Y.-K.3
Scrosati, B.4
-
308
-
-
62349113537
-
2 layered compounds
-
2 layered compounds. J. Power Sources2009, 189, 248-255.
-
(2009)
J. Power Sources
, vol.189
, pp. 248-255
-
-
Martha, S.K.1
Sclar, H.2
Szmuk Framowitz, Z.3
Kovacheva, D.4
Saliyski, N.5
Gofer, Y.6
Sharon, P.7
Golik, E.8
Markovsky, B.9
Aurbach, D.10
-
312
-
-
77949491312
-
2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries
-
2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries. J. Power Sources2010, 195, 4313-4317.
-
(2010)
J. Power Sources
, vol.195
, pp. 4313-4317
-
-
Santhanam, R.1
Rambabu, B.2
-
314
-
-
78349300638
-
2 for high-rate performance lithium-ion batteries
-
2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364-4367.
-
(2010)
Adv. Mater.
, vol.22
, pp. 4364-4367
-
-
Wei, G.-Z.1
Lu, X.2
Ke, F.-S.3
Huang, L.4
Li, J.-T.5
Wang, Z.-X.6
Zhou, Z.-Y.7
Sun, S.-G.8
-
315
-
-
70349169547
-
2
-
2. J. Power Sources2010, 195, 567-573.
-
(2010)
J. Power Sources
, vol.195
, pp. 567-573
-
-
Ito, A.1
Li, D.C.2
Sato, Y.3
Arao, M.4
Watanabe, M.5
Hatano, M.6
Horie, H.7
Ohsawa, Y.8
-
316
-
-
34347351320
-
Vanadate conformation variations in vanadium pentoxide nanostructures
-
O'Dwyer, C.; Lavayen, V.; Newcomb, S. B.; Santa Ana, M. A.; Benavente, E.; González, G.; Sotomayor Torres, C. M. Vanadate conformation variations in vanadium pentoxide nanostructures. J. Electrochem. Soc. 2007, 154, K29-K35.
-
(2007)
J. Electrochem. Soc.
, vol.154
-
-
O'Dwyer, C.1
Lavayen, V.2
Newcomb, S.B.3
Santa Ana, M.A.4
Benavente, E.5
González, G.6
Sotomayor Torres, C.M.7
-
317
-
-
33745842979
-
Synthesis and enhanced intercalation properties of nanostructured vanadium oxides
-
Wang, Y.; Cao, G. Z. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 2006, 18, 2787-2804.
-
(2006)
Chem. Mater.
, vol.18
, pp. 2787-2804
-
-
Wang, Y.1
Cao, G.Z.2
-
318
-
-
84892482944
-
Lithium incorporation by vanadium pentoxide nanoribbons
-
Murphy, D.; Christian, P. Lithium incorporation by vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490-495.
-
(2007)
Nano Lett.
, vol.7
, pp. 490-495
-
-
Murphy, D.1
Christian, P.2
-
320
-
-
0029308457
-
5 secondary batteries
-
5 secondary batteries. Solid State Ionics1995, 78, 143-150.
-
(1995)
Solid State Ionics
, vol.78
, pp. 143-150
-
-
Cocciantelli, J.M.1
Ménétrier, M.2
Delmas, C.3
Doumerc, J.P.4
Pouchard, M.5
Broussely, M.6
Labat, J.7
-
322
-
-
33847708783
-
Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons
-
Chan, C. K.; Peng, H. L.; Twesten, R. D.; Jarausch, K.; Zhang, X. F.; Cui, Y. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490-495.
-
(2007)
Nano Lett.
, vol.7
, pp. 490-495
-
-
Chan, C.K.1
Peng, H.L.2
Twesten, R.D.3
Jarausch, K.4
Zhang, X.F.5
Cui, Y.6
-
323
-
-
77957892812
-
Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries
-
Pan, A. Q.; Zhang, J.-G.; Nie, Z. M.; Cao, G. Z.; Arey, B. W.; Li, G. S.; Liang, S.-Q.; Liu, J. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 2010, 20, 9193-9199.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 9193-9199
-
-
Pan, A.Q.1
Zhang, J.-G.2
Nie, Z.M.3
Cao, G.Z.4
Arey, B.W.5
Li, G.S.6
Liang, S.-Q.7
Liu, J.8
-
324
-
-
46649120901
-
Vanadium oxide nanorods for Li-ion battery applications
-
Reddy, C. V. S.; Wicker, S. A.; Walker, E. H.; Williams, Q. L.; Kalluru, R. R. Vanadium oxide nanorods for Li-ion battery applications. J. Electrochem. Soc. 2008, 155, A599-A602.
-
(2008)
J. Electrochem. Soc.
, vol.155
-
-
Reddy, C.V.S.1
Wicker, S.A.2
Walker, E.H.3
Williams, Q.L.4
Kalluru, R.R.5
-
325
-
-
77954248639
-
5 nanowires: From synthesis to field-emission,^electrochemical, electrical transport,^and photoconductive properties
-
5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547-2552.
-
(2010)
Adv. Mater.
, vol.22
, pp. 2547-2552
-
-
Zhai, T.Y.1
Liu, H.M.2
Li, H.Q.3
Fang, X.S.4
Liao, M.Y.5
Li, L.6
Zhou, H.S.7
Koide, Y.8
Bando, Y.9
Golberg, D.10
-
326
-
-
79952425302
-
Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning
-
Yu, D. M.; Chen, C. G.; Xie, S. H.; Liu, Y. Y.; Park, K.; Zhou, X. Y.; Zhang, Q. F.; Li, J. Y.; Cao, G. Z. Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 2011, 4, 858-861.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 858-861
-
-
Yu, D.M.1
Chen, C.G.2
Xie, S.H.3
Liu, Y.Y.4
Park, K.5
Zhou, X.Y.6
Zhang, Q.F.7
Li, J.Y.8
Cao, G.Z.9
-
327
-
-
80053325130
-
5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior
-
5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 2011, 4, 4000-4008.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4000-4008
-
-
Liu, H.M.1
Yang, W.S.2
-
328
-
-
79956338956
-
Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries
-
Cheah, Y. L.; Gupta, N.; Pramana, S. S.; Aravindan, V.; Wee, G.; Srinivasan, M. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J. Power Sources2011, 196, 6465-6472.
-
(2011)
J. Power Sources
, vol.196
, pp. 6465-6472
-
-
Cheah, Y.L.1
Gupta, N.2
Pramana, S.S.3
Aravindan, V.4
Wee, G.5
Srinivasan, M.6
-
329
-
-
78449304355
-
Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries
-
Mai, L. Q.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750-4755.
-
(2010)
Nano Lett.
, vol.10
, pp. 4750-4755
-
-
Mai, L.Q.1
Xu, L.2
Han, C.H.3
Xu, X.4
Luo, Y.Z.5
Zhao, S.Y.6
Zhao, Y.L.7
-
331
-
-
84863680352
-
5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries
-
5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chem. Eur. J. 2012, 18, 8987-8993.
-
(2012)
Chem. Eur. J.
, vol.18
, pp. 8987-8993
-
-
Wang, H.-G.1
Ma, D.-L.2
Huang, Y.3
Zhang, X.-B.4
-
332
-
-
60549090987
-
Electrospun nano-vanadium pentoxide cathode
-
Ban, C. M.; Chernova, N. A.; Whittingham, M. S. Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 2009, 11, 522-525.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 522-525
-
-
Ban, C.M.1
Chernova, N.A.2
Whittingham, M.S.3
-
333
-
-
39749106648
-
Vanadium pentoxide nanowires: Hydrothermal synthesis, formation mechanism, and phase control parameters
-
Zhou, F.; Zhou, X. M.; Yuan, C.; Li, L. Vanadium pentoxide nanowires: Hydrothermal synthesis, formation mechanism, and phase control parameters. Cryst. Growth Des. 2008, 8, 723-727.
-
(2008)
Cryst. Growth Des.
, vol.8
, pp. 723-727
-
-
Zhou, F.1
Zhou, X.M.2
Yuan, C.3
Li, L.4
-
335
-
-
79960178104
-
5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery
-
5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J. Mater. Chem. 2011, 21, 10336-10341.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 10336-10341
-
-
Wang, Y.1
Zhang, H.J.2
Siah, K.W.3
Wong, C.C.4
Lin, J.Y.5
Borgna, A.6
-
336
-
-
55649089893
-
5 by the polyol method and its electrochemical characterization as cathode material for rechargeable lithium batteries
-
5 by the polyol method and its electrochemical characterization as cathode material for rechargeable lithium batteries. J. Phys. Chem. C2008, 112, 16700-16707.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 16700-16707
-
-
Ragupathy, P.1
Shivakumara, S.2
Vasan, H.N.3
Munichandraiah, N.4
-
337
-
-
84856466729
-
Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries
-
Rui, X. H.; Zhu, J. X.; Liu, W. L.; Tan, H. T.; Sim, D. H.; Xu, C.; Zhang, H.; Ma, J.; Hng, H. H.; Lim, T. M.; et al. Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Adv. 2011, 1, 117-122.
-
(2011)
RSC Adv.
, vol.1
, pp. 117-122
-
-
Rui, X.H.1
Zhu, J.X.2
Liu, W.L.3
Tan, H.T.4
Sim, D.H.5
Xu, C.6
Zhang, H.7
Ma, J.8
Hng, H.H.9
Lim, T.M.10
-
339
-
-
33846968436
-
Atomic layer structure of vanadium oxide nanotubes grown on nanourchin structures
-
O'Dwyer, C.; Lavayen, V.; Newcomb, S. B.; Benavente, E.; Santa Ana, M. A.; González, G.; Sotomayor Torres, C. M. Atomic layer structure of vanadium oxide nanotubes grown on nanourchin structures. Electrochem. Solid-State Lett. 2007, 10, A111-A114.
-
(2007)
Electrochem. Solid-State Lett.
, vol.10
-
-
O'Dwyer, C.1
Lavayen, V.2
Newcomb, S.B.3
Benavente, E.4
Santa Ana, M.A.5
González, G.6
Sotomayor Torres, C.M.7
-
340
-
-
84055192913
-
5 nanocrystals as high performance cathode material for lithium ion batteries
-
5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290-5292. (same as 362).
-
(2011)
Chem. Mater.
, vol.23
, pp. 5290-5292
-
-
Zhang, X.-F.1
Wang, K.-X.2
Wei, X.3
Chen, J.-S.4
-
341
-
-
79954427530
-
5 microspheres as cathode materials for lithium-ion batteries
-
5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365-6369.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 6365-6369
-
-
Wang, S.Q.1
Lu, Z.D.2
Wang, D.3
Li, C.G.4
Chen, C.H.5
Yin, Y.D.6
-
343
-
-
69349095093
-
5-based composites as high-performance anode and cathode materials for Li ion batteries
-
5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 2009, 131, 12086-12087.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 12086-12087
-
-
Liu, J.1
Xia, H.2
Xue, D.F.3
Lu, L.4
-
344
-
-
33746397091
-
Nano-urchin: The formation and structure of high-density spherical clusters of vanadium oxide nanotubes
-
O'Dwyer, C.; Navas, D.; Lavayen, V.; Benavente, E.; Santa Ana, M. A.; González, G.; Newcomb, S. B.; Sotomayor Torres, C. M. Nano-urchin: The formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 2006, 18, 3016-3022.
-
(2006)
Chem. Mater.
, vol.18
, pp. 3016-3022
-
-
O'Dwyer, C.1
Navas, D.2
Lavayen, V.3
Benavente, E.4
Santa Ana, M.A.5
González, G.6
Newcomb, S.B.7
Sotomayor Torres, C.M.8
-
345
-
-
33751220814
-
Comparative structural-vibrational study of nano-urchin and nanorods of vanadium oxide
-
Lavayen, V.; O'Dwyer, C.; Santa Ana, M. A.; Newcomb, S. B.; Benavente, E.; González, G.; Sotomayor Torres, C. M. Comparative structural-vibrational study of nano-urchin and nanorods of vanadium oxide. Phys. Status Solidi B2006, 243, 3285-3289.
-
(2006)
Phys. Status Solidi B
, vol.243
, pp. 3285-3289
-
-
Lavayen, V.1
O'Dwyer, C.2
Santa Ana, M.A.3
Newcomb, S.B.4
Benavente, E.5
González, G.6
Sotomayor Torres, C.M.7
-
348
-
-
58249106927
-
5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network
-
5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem. Int. Ed. 2008, 48, 210-214.
-
(2008)
Angew. Chem. Int. Ed.
, vol.48
, pp. 210-214
-
-
Hu, Y.-S.1
Liu, X.2
Müller, J.-O.3
Schlögl, R.4
Maier, J.5
Su, D.S.6
-
350
-
-
84856729043
-
2O xerogel composite cathodes for lithium ion batteries
-
2O xerogel composite cathodes for lithium ion batteries. RSC Adv. 2011, 1, 690-697.
-
(2011)
RSC Adv.
, vol.1
, pp. 690-697
-
-
Du, G.D.1
Seng, K.H.2
Guo, Z.P.3
Liu, J.4
Li, W.X.5
Jia, D.Z.6
Cook, C.7
Liu, Z.W.8
Liu, H.K.9
-
351
-
-
79952831723
-
5 xerogel electrodes with surface defects
-
5 xerogel electrodes with surface defects. J. Phys. Chem. C2011, 115, 4959-4965.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 4959-4965
-
-
Liu, D.W.1
Liu, Y.Y.2
Pan, A.Q.3
Nagle, K.P.4
Seidler, G.T.5
Jeong, Y.-H.6
Cao, G.Z.7
-
352
-
-
80052963307
-
5 nano-electrodes with high power and energy densities for thin film Li-ion batteries
-
5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv. Energy Mater. 2011, 1, 194-202.
-
(2011)
Adv. Energy Mater.
, vol.1
, pp. 194-202
-
-
Liu, Y.Y.1
Clark, M.2
Zhang, Q.F.3
Yu, D.M.4
Liu, D.W.5
Liu, J.6
Cao, G.W.7
-
353
-
-
84855584505
-
5: Their electrochemical and field emission properties
-
5: Their electrochemical and field emission properties. Nanoscale2012, 4, 645-651.
-
(2012)
Nanoscale
, vol.4
, pp. 645-651
-
-
Dewangan, K.1
Sinha, N.N.2
Chavan, P.G.3
Sharma, P.K.4
Pandey, A.C.5
More, M.A.6
Joag, D.S.7
Munichandraiah, N.8
Gajbhiye, N.S.9
-
354
-
-
79954603508
-
5 electrode for flexible lithium ion batteries
-
5 electrode for flexible lithium ion batteries. Electrochem. Commun. 2011, 13, 383-386.
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 383-386
-
-
Seng, K.H.1
Liu, J.2
Guo, Z.P.3
Chen, Z.X.4
Jia, D.Z.5
Liu, H.K.6
-
355
-
-
4043075572
-
Electrospinning of nanofibers: Reinventing the wheel?
-
Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151-1170.
-
(2004)
Adv. Mater.
, vol.16
, pp. 1151-1170
-
-
Li, D.1
Xia, Y.2
-
356
-
-
34547475023
-
Electrospinning: A fascinating method for the preparation of ultrathin fibers
-
Greiner, A.; Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 2007, 46, 5670-703.
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 5670-5703
-
-
Greiner, A.1
Wendorff, J.H.2
-
357
-
-
1242275289
-
Effect of sheet distance on the optical properties of vanadate nanotubes
-
Cao, J.; Choi, J.; Musfeldt, J. L. Effect of sheet distance on the optical properties of vanadate nanotubes. Chem. Mater. 2004, 16, 731-736.
-
(2004)
Chem. Mater.
, vol.16
, pp. 731-736
-
-
Cao, J.1
Choi, J.2
Musfeldt, J.L.3
-
358
-
-
1842458525
-
5 nanotubes
-
5 nanotubes. Phys. Rev. B2004, 69, 085410.
-
(2004)
Phys. Rev. B
, vol.69
, pp. 085410
-
-
Petkov, V.1
Zavalij, P.Y.2
Lutta, S.3
Whittingham, M.S.4
Parvanov, V.5
Shastri, S.6
-
359
-
-
67649231119
-
+ intercalation and charge capacity
-
+ intercalation and charge capacity. Adv. Funct. Mater. 2009, 19, 1736-1745.
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 1736-1745
-
-
O'Dwyer, C.1
Lavayen, V.2
Tanner, D.A.3
Newcomb, S.B.4
Benavente, E.5
González, G.6
Torres, C.M.S.7
-
360
-
-
33750795809
-
Vanadium pentoxide gels
-
Livage, J. Vanadium pentoxide gels. Chem. Mater. 1991, 3, 578-593.
-
(1991)
Chem. Mater.
, vol.3
, pp. 578-593
-
-
Livage, J.1
-
361
-
-
84055192913
-
5 nanocrystals as high performance cathode material for lithium ion batteries
-
5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290-5292.
-
(2011)
Chem. Mater.
, vol.23
, pp. 5290-5292
-
-
Zhang, X.F.1
Wang, K.X.2
Wei, X.3
Chen, J.S.4
-
363
-
-
78651411330
-
8 nanorods as a cathode material for high-rate secondary lithium batteries
-
8 nanorods as a cathode material for high-rate secondary lithium batteries. J. Mater. Chem. 2011, 21, 1153-1161.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 1153-1161
-
-
Pan, A.1
Liu, J.2
Zhang, J.G.3
Cao, G.4
Xu, W.5
Nie, Z.6
Jie, X.7
Choi, D.8
Arey, B.W.9
Wang, C.10
-
364
-
-
77951889668
-
Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries
-
Sakunthala, A.; Reddy, M.; Selvasekarapandian, S.; Chowdari, B.; Selvin, P. C. Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries. J. Phys. Chem. C2010, 114, 8099-8107.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 8099-8107
-
-
Sakunthala, A.1
Reddy, M.2
Selvasekarapandian, S.3
Chowdari, B.4
Selvin, P.C.5
-
365
-
-
77954174195
-
8 cathode powders prepared by spray pyrolysis
-
8 cathode powders prepared by spray pyrolysis. Electrochim. Acta2010, 55, 6088-6092.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 6088-6092
-
-
Ju, S.H.1
Kang, Y.C.2
-
367
-
-
80755175929
-
8 cathode materials for rechargeable lithium batteries
-
8 cathode materials for rechargeable lithium batteries. J. Power Sources2012, 198, 287-293.
-
(2012)
J. Power Sources
, vol.198
, pp. 287-293
-
-
Qiao, Y.Q.1
Wang, X.L.2
Zhou, J.P.3
Zhang, J.4
Gu, C.D.5
Tu, J.P.6
-
368
-
-
84864463775
-
8 electrode with enhanced performance for lithium ion batteries
-
8 electrode with enhanced performance for lithium ion batteries. RSC Adv. 2012, 2, 7273-7278.
-
(2012)
RSC Adv.
, vol.2
, pp. 7273-7278
-
-
Shi, Q.1
Liu, J.W.2
Hu, R.Z.3
Zeng, M.Q.4
Dai, M.J.5
Zhu, M.6
-
369
-
-
84864128358
-
8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries
-
8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries. NPG Asia. Mater. 2012, 4, e20.
-
(2012)
NPG Asia. Mater.
, vol.4
-
-
Xu, X.1
Luo, Y.Z.2
Mai, L.Q.3
Zhao, Y.L.4
An, Q.Y.5
Xu, L.6
Hu, F.7
Zhang, L.8
Zhang, Q.J.9
-
371
-
-
79959813246
-
8 with high capacity and excellent stability for high energy lithium batteries
-
8 with high capacity and excellent stability for high energy lithium batteries. J. Mater. Chem. 2011, 21, 10077-10084.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 10077-10084
-
-
Pan, A.1
Zhang, J.G.2
Cao, G.3
Liang, S.4
Wang, C.5
Nie, Z.6
Arey, B.W.7
Xu, W.8
Liu, D.9
Xiao, J.10
Li, G.11
Liu, J.12
-
372
-
-
39349091630
-
8 nanoparticles made by flame spray pyrolysis
-
8 nanoparticles made by flame spray pyrolysis. Electrochem. Solid-State Lett. 2008, 11, A46-A50.
-
(2008)
Electrochem. Solid-State Lett.
, vol.11
-
-
Patey, T.J.1
Ng, S.H.2
Buchel, R.3
Tran, N.4
Krumeich, F.5
Wang, J.6
Liu, H.K.7
Novák, P.8
-
373
-
-
0031124233
-
Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
-
Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188-1194.
-
(1997)
J. Electrochem. Soc.
, vol.144
, pp. 1188-1194
-
-
Padhi, A.K.1
Nanjundaswamy, K.S.2
Goodenough, J.B.3
-
375
-
-
78751625429
-
4 cathode materials: A review
-
4 cathode materials: A review. J. Power Sources2011, 196, 2962-2970.
-
(2011)
J. Power Sources
, vol.196
, pp. 2962-2970
-
-
Zhang, W.J.1
-
377
-
-
62249143548
-
Battery materials for ultrafast charging and discharging
-
Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature2009, 458, 190-193.
-
(2009)
Nature
, vol.458
, pp. 190-193
-
-
Kang, B.1
Ceder, G.2
-
378
-
-
80052235810
-
Recent advances in the research of polyanion-type cathode materials for Li-ion batteries
-
Gong, Z. L.; Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy. Environ. Sci. 2011, 4, 3223-3242.
-
(2011)
Energy. Environ. Sci.
, vol.4
, pp. 3223-3242
-
-
Gong, Z.L.1
Yang, Y.2
-
380
-
-
75749107745
-
4 nanoparticles with high rate performance in lithium secondary batteries
-
4 nanoparticles with high rate performance in lithium secondary batteries. J. Power Sources2010, 195, 3661-3667.
-
(2010)
J. Power Sources
, vol.195
, pp. 3661-3667
-
-
Konarova, M.1
Taniguchi, I.2
-
382
-
-
62349130409
-
4 cathode materials coated with high surface area carbon
-
4 cathode materials coated with high surface area carbon. J. Power Sources2009, 189, 155-162.
-
(2009)
J. Power Sources
, vol.189
, pp. 155-162
-
-
Lu, C.Z.1
Fey, G.T.K.2
Kao, H.M.3
-
383
-
-
62349087722
-
4 cathode materials
-
4 cathode materials. J. Power Sources2009, 189, 462-466.
-
(2009)
J. Power Sources
, vol.189
, pp. 462-466
-
-
Zhao, B.1
Jiang, Y.2
Zhang, H.J.3
Tao, H.4
Zhong, M.5
Jiao, Z.6
-
384
-
-
54749123571
-
4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method
-
4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Edit. 2008, 47, 7461-7465.
-
(2008)
Angew. Chem. Int. Edit.
, vol.47
, pp. 7461-7465
-
-
Wang, Y.1
Wang, Y.2
Hosono, E.3
Wang, K.4
Zhou, H.5
-
386
-
-
77954935273
-
4
-
4. J. Phys. Chem. C2010, 114, 12598-12603.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 12598-12603
-
-
Ferrari, S.1
Lavall, R.L.2
Capsoni, D.3
Quartarone, E.4
Magistris, A.5
Mustarelli, P.6
Canton, P.7
-
388
-
-
56549123460
-
4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries
-
4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. J. Mater. Chem. 2008, 18, 5661-5668.
-
(2008)
J. Mater. Chem.
, vol.18
, pp. 5661-5668
-
-
Muraliganth, T.1
Murugan, A.V.2
Manthiram, A.3
-
389
-
-
42649139601
-
4/carbon composites as cathode materials for lithium-ion batteries
-
4/carbon composites as cathode materials for lithium-ion batteries. Ceram. Int. 2008, 34, 863-866.
-
(2008)
Ceram. Int.
, vol.34
, pp. 863-866
-
-
Kuwahara, A.1
Suzuki, S.2
Miyayama, M.3
-
391
-
-
67650034664
-
4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices
-
4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Adv. Mater. 2009, 21, 2710-2714.
-
(2009)
Adv. Mater.
, vol.21
, pp. 2710-2714
-
-
Wu, X.L.1
Jiang, L.Y.2
Cao, F.F.3
Guo, Y.G.4
Wan, L.J.5
-
394
-
-
61449249117
-
4/C composite from mechanical activation using sucrose as carbon source
-
4/C composite from mechanical activation using sucrose as carbon source. Electrochim. Acta2009, 54, 2861-2868.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 2861-2868
-
-
Wang, K.H.1
Cai, R.T.2
Yuan, T.Y.3
Yu, X.4
Ran, R.5
Shao, Z.W.6
-
398
-
-
61849097814
-
4
-
4. Electrochim. Acta2009, 54, 3206-3210.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 3206-3210
-
-
Zhang, Y.1
Feng, H.2
Wu, X.B.3
Wang, L.Z.4
Zhang, A.Q.5
Xia, T.6
Dong, H.7
Liu, M.H.8
-
400
-
-
51449096077
-
4/graphite battery
-
4/graphite battery. J. Power Sources2008, 184, 522-526.
-
(2008)
J. Power Sources
, vol.184
, pp. 522-526
-
-
Liu, Y.J.1
Li, X.H.2
Guo, H.3
Wang, Z.X.4
Peng, W.J.5
Yang, Y.6
Liang, R.F.7
-
401
-
-
56049097471
-
4/C composite for lithium rechargeable batteries
-
4/C composite for lithium rechargeable batteries. Solid. State. Ionics. 2008, 179, 1897-1901.
-
(2008)
Solid. State. Ionics.
, vol.179
, pp. 1897-1901
-
-
Liu, H.1
Tang, D.2
-
404
-
-
70549112033
-
4/C prepared by an aqueous solution method using sucrose
-
4/C prepared by an aqueous solution method using sucrose. Electrochim. Acta2010, 55, 1034-1041.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 1034-1041
-
-
Kadoma, Y.1
Kim, J.-M.2
Abiko, K.3
Ohtsuki, K.4
Ui, K.5
Kumagai, N.6
-
405
-
-
67649220585
-
4/C composite
-
4/C composite. Electrochim. Acta2009, 54, 5770-5774.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 5770-5774
-
-
Yan, X.1
Yang, G.2
Liu, J.3
Ge, Y.4
Xie, H.5
Pan, X.6
Wang, R.7
-
406
-
-
78649879934
-
4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance
-
4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 2010, 22, 4944-4948.
-
(2010)
Adv. Mater.
, vol.22
, pp. 4944-4948
-
-
Wang, G.1
Liu, H.2
Liu, J.3
Qiao, S.4
Lu, G.M.5
Munroe, P.6
Ahn, H.7
-
409
-
-
70349180130
-
4/C composite with high-rate performance by starch sol assisted rheological phase method
-
4/C composite with high-rate performance by starch sol assisted rheological phase method. J. Power Sources2010, 195, 610-613.
-
(2010)
J. Power Sources
, vol.195
, pp. 610-613
-
-
Huang, Y.1
Ren, H.2
Yin, S.3
Wang, Y.4
Peng, Z.5
Zhou, Y.6
-
410
-
-
65549148236
-
4/C composites as cathode materials for lithium-ion batteries
-
4/C composites as cathode materials for lithium-ion batteries. Electrochim. Acta2009, 54, 4595-4599.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 4595-4599
-
-
Chang, Z.R.1
Lv, H.J.2
Tang, H.W.3
Li, H.J.4
Yuan, X.-Z.5
Wang, H.6
-
411
-
-
41549149913
-
4/C cathode material for lithium-ion batteries
-
4/C cathode material for lithium-ion batteries. Electrochim. Acta2008, 53, 5071-5075.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 5071-5075
-
-
Gao, F.1
Tang, Z.2
-
413
-
-
69449106344
-
4/C for high power lithium-ion batteries for hybrid electric vehicle application
-
4/C for high power lithium-ion batteries for hybrid electric vehicle application. J. Power Sources2009, 194, 1094-1098.
-
(2009)
J. Power Sources
, vol.194
, pp. 1094-1098
-
-
Beninati, S.1
Damen, L.2
Mastragostino, M.3
-
414
-
-
67649398803
-
4/C via V-doping
-
4/C via V-doping. J. Power Sources2009, 193, 841-845.
-
(2009)
J. Power Sources
, vol.193
, pp. 841-845
-
-
Sun, C.S.1
Zhou, Z.2
Xu, Z.G.3
Wang, D.G.4
Wei, J.P.5
Bian, X.K.6
Yan, J.7
-
415
-
-
77953138586
-
4/C nanocomposites: A novel and simple template-free concept and synthesis via sol-gel-spray drying method
-
4/C nanocomposites: A novel and simple template-free concept and synthesis via sol-gel-spray drying method. J. Power Sources2010, 195, 6873-6878.
-
(2010)
J. Power Sources
, vol.195
, pp. 6873-6878
-
-
Yu, F.Z.1
Zhang, J.2
Yang, Y.3
Song, G.4
-
416
-
-
78449307942
-
4 as high rate electrode for rechargeable lithium batteries
-
4 as high rate electrode for rechargeable lithium batteries. Adv. Mater. 2010, 22, 4842-4845.
-
(2010)
Adv. Mater.
, vol.22
, pp. 4842-4845
-
-
Oh, S.W.1
Myung, S.T.2
Oh, S.M.3
Oh, K.H.4
Amine, K.5
Scrosati, B.6
Sun, Y.K.7
-
418
-
-
67649210738
-
4/carbon composite cathode material for lithium-ion battery applications
-
4/carbon composite cathode material for lithium-ion battery applications. Electrochim. Acta2009, 54, 5656-5659.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 5656-5659
-
-
Liu, J.H.1
Wang, J.2
Yan, X.3
Zhang, X.Y.4
Yang, G.5
Jalbout, A.F.6
Wang, R.7
-
420
-
-
79952171026
-
4 nanoplate microspheres with high electrochemical performance for Li-ion batteries
-
4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126-1129.
-
(2011)
Adv. Mater.
, vol.23
, pp. 1126-1129
-
-
Wu, Y.M.1
Wen, Z.H.2
Li, J.H.3
-
422
-
-
33646497253
-
4
-
4. Nat. Mater. 2006, 5, 357-360.
-
(2006)
Nat. Mater.
, vol.5
, pp. 357-360
-
-
Yamada, A.1
Koizumi, H.2
Nishimura, S.-I.3
Sonoyama, N.4
Kanno, R.5
Yonemura, M.6
Nakamura, T.7
Kobayashi, Y.8
-
424
-
-
50049125580
-
4
-
4. Nat. Mater. 2008, 7, 707-711.
-
(2008)
Nat. Mater.
, vol.7
, pp. 707-711
-
-
Nishimura, S.1
Kobayashi, G.2
Ohoyama, K.3
Kanno, R.4
Yashima, M.5
Yamada, A.6
-
425
-
-
50149115192
-
4
-
4. Nat. Mater. 2008, 7, 741-747.
-
(2008)
Nat. Mater.
, vol.7
, pp. 741-747
-
-
Gibot, P.1
Casas-Cabanas, M.2
Laffont, L.3
Levasseur, S.4
Carlach, P.5
Hamelet, S.6
Tarascon, J.-M.7
Masquelier, C.8
-
426
-
-
77954699010
-
4 nanowire with a VGCF core column and a carbon shell through the electrospinning method
-
4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. ACS Appl. Mater. Interfaces2010, 2, 212-218.
-
(2010)
ACS Appl. Mater. Interfaces
, vol.2
, pp. 212-218
-
-
Hosono, E.1
Wang, Y.2
Kida, N.3
Enomoto, M.4
Kojima, N.5
Okubo, M.6
Matsuda, H.7
Saito, Y.8
Kudo, T.9
Honma, I.10
Zhou, H.11
-
427
-
-
49249124564
-
4 cathodes for high-performance lithium batteries
-
4 cathodes for high-performance lithium batteries. Chem. Mater. 2008, 20, 4560-4564.
-
(2008)
Chem. Mater.
, vol.20
, pp. 4560-4564
-
-
Lim, S.1
Yoon, C.S.2
Cho, J.3
-
428
-
-
65249117605
-
4 powders for Li-ion battery applications
-
4 powders for Li-ion battery applications. Chem. Mater. 2009, 21, 1096-1107.
-
(2009)
Chem. Mater.
, vol.21
, pp. 1096-1107
-
-
Recham, N.1
Dupont, L.2
Courty, M.3
Djellab, K.4
Larcher, D.5
Armand, M.6
Tarascon, J.-M.7
-
429
-
-
69549116592
-
4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling
-
4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling. J. Power Sources2009, 194, 1029-1035.
-
(2009)
J. Power Sources
, vol.194
, pp. 1029-1035
-
-
Konarova, M.1
Taniguchi, I.2
-
433
-
-
39549103854
-
4 cathode materials by hydrothermal method
-
4 cathode materials by hydrothermal method. Solid State Ionics2008, 178, 1907-1914.
-
(2008)
Solid State Ionics
, vol.178
, pp. 1907-1914
-
-
Jin, B.1
Gu, H.B.2
-
434
-
-
65249123259
-
4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries
-
4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J. Phys. Chem. C2009, 113, 3345-3351.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 3345-3351
-
-
Yang, H.1
Wu, X.L.2
Cao, M.H.3
Guo, Y.G.4
-
435
-
-
74549185272
-
4 nanorods as a cathode material for lithium-ion power batteries
-
4 nanorods as a cathode material for lithium-ion power batteries. Electrochim. Acta2010, 55, 1626-1629.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 1626-1629
-
-
Liu, H.W.1
Yang, H.Y.2
Li, J.L.3
-
438
-
-
57949084483
-
4 lithium rechargeable battery promoted by electrochemically active polymers
-
4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 2008, 20, 7237-7241.
-
(2008)
Chem. Mater.
, vol.20
, pp. 7237-7241
-
-
Huang, Y.H.1
Goodenough, J.B.2
-
441
-
-
58449094943
-
4 nanoplates
-
4 nanoplates. J. Mater. Chem. 2009, 19, 605-610.
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 605-610
-
-
Saravanan, K.1
Reddy, M.V.2
Balaya, P.3
Gong, H.4
Chowdari, B.V.R.5
Vittal, J.J.6
-
442
-
-
73249122659
-
4 nanocrystals mediated by organic acid
-
4 nanocrystals mediated by organic acid. J. Power Sources2010, 195, 2877-2882.
-
(2010)
J. Power Sources
, vol.195
, pp. 2877-2882
-
-
Ni, J.1
Morishita, M.2
Kawabe, Y.3
Watada, M.4
Takeichi, N.5
Sakai, T.6
-
443
-
-
79951932163
-
4 cathode materials for high power lithium ion batteries
-
4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 2011, 21, 3353-3358.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 3353-3358
-
-
Zhou, X.1
Wang, F.2
Zhu, Y.3
Liu, Z.4
-
445
-
-
77958062164
-
Particle size dependence of the ionic diffusivity
-
Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010, 10, 4123-4127.
-
(2010)
Nano Lett.
, vol.10
, pp. 4123-4127
-
-
Malik, R.1
Burch, D.2
Bazant, M.3
Ceder, G.4
-
447
-
-
77957591590
-
4 nanocomposite cathode for lithium batteries
-
4 nanocomposite cathode for lithium batteries. Adv. Funct. Mater. 2010, 20, 3260-3265.
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 3260-3265
-
-
Oh, S.M.1
Oh, S.W.2
Yoon, C.S.3
Scrosati, B.4
Amine, K.5
Sun, Y.-K.6
-
450
-
-
45649083969
-
4 and its effect on the electrochemical activity
-
4 and its effect on the electrochemical activity. Electrochem. Commun. 2008, 10, 1071-1073.
-
(2008)
Electrochem. Commun.
, vol.10
, pp. 1071-1073
-
-
Fang, H.S.1
Pan, Z.Y.2
Li, L.P.3
Yang, Y.4
Yan, G.F.5
Li, G.S.6
Wei, S.Q.7
-
451
-
-
61449154650
-
4 (M = Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage
-
4 (M = Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg. Chem. 2009, 48, 946-52.
-
(2009)
Inorg. Chem.
, vol.48
, pp. 946-952
-
-
Vadivel Murugan, A.1
Muraliganth, T.2
Ferreira, P.J.3
Manthiram, A.4
-
452
-
-
36249013242
-
4 cathodes
-
4 cathodes. J. Power Sources2007, 174, 949-953.
-
(2007)
J. Power Sources
, vol.174
, pp. 949-953
-
-
Drezen, T.1
Kwon, N.-H.2
Bowen, P.3
Teerlinck, I.4
Isono, M.5
Exnar, I.6
-
453
-
-
62349124028
-
4 synthesized via a polyol method
-
4 synthesized via a polyol method. J. Power Sources2009, 189, 624-628.
-
(2009)
J. Power Sources
, vol.189
, pp. 624-628
-
-
Wang, D.1
Buqa, H.2
Crouzet, M.3
Deghenghi, G.4
Drezen, T.5
Exnar, I.6
Kwon, N.-H.7
Miners, J.H.8
Poletto, L.9
Grätzel, M.10
-
454
-
-
77954811335
-
4/C composite cathode prepared with different conductive carbons
-
4/C composite cathode prepared with different conductive carbons. J. Power Sources2010, 195, 7445-7451.
-
(2010)
J. Power Sources
, vol.195
, pp. 7445-7451
-
-
Bakenov, Z.1
Taniguchi, I.2
-
456
-
-
73849119932
-
4 via Mn-site substitution
-
4 via Mn-site substitution. J. Electrochem. Soc. 2010, 157, A225-A229.
-
(2010)
J. Electrochem. Soc.
, vol.157
-
-
Wang, D.1
Ouyang, C.2
Drézen, T.3
Exnar, I.4
Kay, A.5
Kwon, N.-H.6
Gouerec, P.7
Miners, J.H.8
Wang, M.9
Grätzel, M.10
-
457
-
-
20444419780
-
4 (M = Fe, Mn) electrode materials
-
4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 2005, 152, A913-A921.
-
(2005)
J. Electrochem. Soc.
, vol.152
-
-
Delacourt, C.1
Laffont, L.2
Bouchet, R.3
Wurm, C.4
Leriche, J.-B.5
Morcrette, M.6
Tarascon, J.-M.7
Masquelier, C.8
-
458
-
-
77955574457
-
4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode
-
4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano. Lett. 2010, 10, 2799-2805.
-
(2010)
Nano. Lett.
, vol.10
, pp. 2799-2805
-
-
Choi, D.1
Wang, D.2
Bae, I.T.3
Xiao, J.4
Nie, Z.5
Wang, W.6
Viswanathan, V.V.7
Lee, Y.J.8
Zhang, J.G.9
Graff, G.L.10
-
459
-
-
51849097403
-
Improving the performance of lithium manganese phosphate through divalent cation substitution
-
Chen, G.; Wilcox, J. D.; Richardson, T. J. Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem. Solid. State Lett. 2008, 11, A190-A194.
-
(2008)
Electrochem. Solid.State Lett.
, vol.11
-
-
Chen, G.1
Wilcox, J.D.2
Richardson, T.J.3
-
460
-
-
81355133022
-
Synthesis, structure and electrochemistry of lithium vanadium phosphate cathode materials
-
Allen, C.; Jia, Q.; Chinnasamy, C. Synthesis, structure and electrochemistry of lithium vanadium phosphate cathode materials. J. Electrochem. Soc. 2011, 158, 1250-1259.
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. 1250-1259
-
-
Allen, C.1
Jia, Q.2
Chinnasamy, C.3
-
461
-
-
53349174253
-
4: Experimental characterization and theoretical investigations
-
4: Experimental characterization and theoretical investigations. Solid State Sci2008, 10, 1292-1298.
-
(2008)
Solid State Sci
, vol.10
, pp. 1292-1298
-
-
Yang, Y.1
Fang, H.S.2
Zheng, J.3
Li, L.P.4
Li, G.5
Yan, G.F.6
-
464
-
-
33750417167
-
4F: A new active material for safe lithium-ion batteries
-
4F: A new active material for safe lithium-ion batteries. Solid State Ionics2006, 177, 2635-2638.
-
(2006)
Solid State Ionics
, vol.177
, pp. 2635-2638
-
-
Gover, R.1
Burns, P.2
Bryan, A.3
Saidi, M.4
Swoyer, J.5
Barker, J.6
-
465
-
-
84855818907
-
4F cathode material by chemical lithiation and postannealing
-
4F cathode material by chemical lithiation and postannealing. J. Power Sources2012, 202, 380-383.
-
(2012)
J. Power Sources
, vol.202
, pp. 380-383
-
-
Zheng, J.1
Zhang, B.2
Yang, Z.3
-
466
-
-
78649714698
-
3/carbon composite for high-rate lithium-ion batteries
-
3/carbon composite for high-rate lithium-ion batteries. Electrochem. Commun. 2010, 12, 1674-1677.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1674-1677
-
-
Pan, A.1
Liu, J.2
Zhang, J.G.3
Xu, W.4
Cao, G.5
Nie, Z.6
Arey, B.W.7
Liang, S.8
-
468
-
-
59849117928
-
3/C positive material by one-step solid-state reaction
-
3/C positive material by one-step solid-state reaction. Electrochim. Acta2009, 54, 2253-2258.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 2253-2258
-
-
Zhou, X.1
Liu, Y.2
Guo, Y.3
-
469
-
-
78650032997
-
3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis
-
3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochim. Acta2010, 56, 510-516.
-
(2010)
Electrochim. Acta
, vol.56
, pp. 510-516
-
-
Qiao, Y.Q.1
Wang, X.L.2
Zhou, Y.3
Xiang, J.Y.4
Zhang, D.5
Shi, S.J.6
Tu, J.P.7
-
470
-
-
69249112636
-
3/C cathode material using a novel carbon source
-
3/C cathode material using a novel carbon source. Electrochim. Acta2009, 54, 6451-6454.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 6451-6454
-
-
Wang, J.W.1
Liu, J.2
Yang, G.L.3
Zhang, X.F.4
Yan, X.F.5
Pan, X.6
Wang, R.S.7
-
471
-
-
79551559892
-
3/C cathode materials using stearic acid as a carbon source
-
3/C cathode materials using stearic acid as a carbon source. Electrochim. Acta2011, 56, 2269-2275.
-
(2011)
Electrochim. Acta
, vol.56
, pp. 2269-2275
-
-
Qiao, Y.Q.1
Wang, X.L.2
Xiang, J.Y.3
Zhang, D.4
Liu, W.L.5
Tu, J.P.6
-
473
-
-
61549090877
-
3 cathode materials with different carbon sources
-
3 cathode materials with different carbon sources. Electrochim. Acta2009, 54, 3374-3380.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 3374-3380
-
-
Rui, X.H.1
Li, C.2
Chen, C.H.3
-
474
-
-
37349034335
-
3/carbon cathode for lithium ion batteries
-
3/carbon cathode for lithium ion batteries. Electrochim. Acta2008, 53, 2232-2237.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 2232-2237
-
-
Chang, C.X.1
Xiang, J.F.2
Shi, X.X.3
Han, X.Y.4
Yuan, L.J.5
Sun, J.T.6
-
475
-
-
77950062514
-
3 cathode material prepared by a PVA assisted sol-gel method
-
3 cathode material prepared by a PVA assisted sol-gel method. Electrochim. Acta2010, 55, 3864-3869.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 3864-3869
-
-
Jiang, T.1
Pan, W.C.2
Wang, J.3
Bie, X.F.4
Du, F.5
Wei, Y.J.6
Wang, C.7
Chen, G.8
-
476
-
-
67649185147
-
3 as cathode materials for lithium-ion batteries
-
3 as cathode materials for lithium-ion batteries. Electrochim. Acta2009, 54, 5844-5850.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 5844-5850
-
-
Chen, Y.H.1
Zhao, Y.M.2
An, X.N.3
Liu, J.M.4
Dong, Y.Z.5
Chen, L.6
-
477
-
-
77955717135
-
3/C composites with high-rate capability prepared by a maltose-based sol-gel route
-
3/C composites with high-rate capability prepared by a maltose-based sol-gel route. Electrochim. Acta2010, 55, 6761-6767.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 6761-6767
-
-
Rui, X.H.1
Li, C.2
Liu, J.3
Cheng, T.4
Chen, C.H.5
-
478
-
-
74549172244
-
3 cathode materials for lithium-ion batteries
-
3 cathode materials for lithium-ion batteries. Electrochim. Acta2010, 55, 1575-1581.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 1575-1581
-
-
Kuang, Q.1
Zhao, Y.M.2
An, X.N.3
Liu, J.N.4
Dong, Y.Z.5
Chen, L.6
-
481
-
-
62349139659
-
3 cathode material synthesized by chemical reduction and lithiation method
-
3 cathode material synthesized by chemical reduction and lithiation method. J. Power Sources2009, 189, 476-479.
-
(2009)
J. Power Sources
, vol.189
, pp. 476-479
-
-
Zheng, J.-C.1
Li, X.-H.2
Wang, Z.-X.3
Guo, H.-J.4
Hu, Q.-Y.5
Peng, W.-J.6
-
482
-
-
77950284515
-
3/(Ag+C) composite cathode
-
3/(Ag+C) composite cathode. J. Power Sources2010, 195, 5057-5061.
-
(2010)
J. Power Sources
, vol.195
, pp. 5057-5061
-
-
Zhang, L.1
Wang, X.L.2
Xiang, J.Y.3
Zhou, Y.4
Shi, S.J.5
Tu, J.P.6
-
483
-
-
38849209128
-
3/C composite cathode material for lithium-ion batteries
-
3/C composite cathode material for lithium-ion batteries. Mater. Lett. 2008, 62, 1646-1648.
-
(2008)
Mater. Lett.
, vol.62
, pp. 1646-1648
-
-
Tang, A.P.1
Wang, X.Y.2
Liu, Z.M.3
-
484
-
-
79960978506
-
3/ graphene nanocomposites as cathode material for lithium ion batteries
-
3/ graphene nanocomposites as cathode material for lithium ion batteries. Chem. Commun. 2011, 47, 9110-9112.
-
(2011)
Chem. Commun.
, vol.47
, pp. 9110-9112
-
-
Liu, H.D.1
Gao, P.2
Fang, J.H.3
Yang, G.4
-
485
-
-
84863337598
-
3 as a high rate cathode material for lithium-ion batteries
-
3 as a high rate cathode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 6556-6560.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 6556-6560
-
-
Cho, A.R.1
Son, J.N.2
Aravindan, V.3
Kim, H.4
Kang, K.S.5
Yoon, W.S.6
Kim, W.S.7
Lee, Y.S.8
-
486
-
-
84861306548
-
3/ graphene as cathode materials for lithium ion batteries
-
3/ graphene as cathode materials for lithium ion batteries. J. Mater. Chem. 2012, 22, 11039-11047.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 11039-11047
-
-
Liu, H.D.1
Yang, G.2
Zhang, X.F.3
Gao, P.4
Wang, L.5
Fang, J.H.6
Pinto, J.7
Jiang, X.F.8
-
489
-
-
84862281527
-
2 coating for lithium-ion batteries
-
2 coating for lithium-ion batteries. J. Phys. Chem. C2012, 116, 12401-12408.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 12401-12408
-
-
Zhang, L.-L.1
Liang, G.2
Peng, G.3
Zou, F.4
Huang, Y.-H.5
Croft, M.C.6
Ignatov, A.7
-
492
-
-
79959835856
-
Silicate cathodes for lithium batteries: Alternatives to phosphates?
-
Islam, M. S.; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, A. R.; Bruce, P. G. Silicate cathodes for lithium batteries: Alternatives to phosphates? J. Mater. Chem. 2011, 21, 9811-9818.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 9811-9818
-
-
Islam, M.S.1
Dominko, R.2
Masquelier, C.3
Sirisopanaporn, C.4
Armstrong, A.R.5
Bruce, P.G.6
-
494
-
-
53549120658
-
4
-
4. J. Am. Chem. Soc. 2008, 130, 13212-13213.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 13212-13213
-
-
Nishimura, S.1
Hayase, S.2
Kanno, R.3
Yashima, M.4
Nakayama, N.5
Yamada, A.6
-
496
-
-
77954250328
-
4
-
4. Dalton Trans. 2010, 39, 6310-6316.
-
(2010)
Dalton Trans.
, vol.39
, pp. 6310-6316
-
-
Boulineau, A.1
Sirisopanaporn, C.2
Dominko, R.3
Armstrong, A.R.4
Bruce, P.G.5
Masquelier, C.6
-
497
-
-
72449146823
-
4 Lithium battery material: Atomic-scale study of defects,^lithium mobility,^and trivalent dopants
-
4 Lithium battery material: Atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem. Mater. 2009, 21, 5196-5202.
-
(2009)
Chem. Mater.
, vol.21
, pp. 5196-5202
-
-
Kuganathan, N.1
Islam, M.S.2
-
502
-
-
79959484700
-
4/C composite: Synthesis, characterization and high storage capacity
-
4/C composite: Synthesis, characterization and high storage capacity. J. Mater. Chem. 2011, 21, 9506-9512.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 9506-9512
-
-
Lv, D.P.1
Wen, W.2
Huang, X.K.3
Bai, J.Y.4
Mi, J.X.5
Wu, S.Q.6
Yang, Y.7
-
503
-
-
84869201149
-
4 cathode materials for lithium-ion batteries
-
4 cathode materials for lithium-ion batteries. RSC Adv. 2012, 2, 6994-6998.
-
(2012)
RSC Adv.
, vol.2
, pp. 6994-6998
-
-
Zuo, P.J.1
Wang, T.2
Cheng, G.Y.3
Cheng, X.Q.4
Du, C.Y.5
Yin, G.P.6
-
504
-
-
62349133604
-
4/C cathode
-
4/C cathode. J. Power Sources2009, 189, 45-50.
-
(2009)
J. Power Sources
, vol.189
, pp. 45-50
-
-
Li, L.M.1
Guo, H.J.2
Li, X.H.3
Wang, Z.X.4
Peng, W.J.5
Xiang, K.X.6
Cao, X.7
-
506
-
-
84655176532
-
4/C composite as cathode material for lithium-ion batteries
-
4/C composite as cathode material for lithium-ion batteries. Electrochim. Acta2012, 60, 239-243.
-
(2012)
Electrochim. Acta
, vol.60
, pp. 239-243
-
-
Huang, X.B.1
Chen, H.H.2
Zhou, S.B.3
Chen, Y.D.4
Yang, J.F.5
Ren, Y.R.6
Wang, H.Y.7
Qu, M.Z.8
Pan, Z.L.9
Yu, Z.L.10
-
512
-
-
84858181831
-
4 (M = Fe, Mn) as high-capacity Li-ion battery electrode
-
4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 2012, 12, 1146-1151.
-
(2012)
Nano Lett.
, vol.12
, pp. 1146-1151
-
-
Rangappa, D.1
Murukanahally, K.D.2
Tomai, T.3
Unemoto, A.4
Honma, I.5
-
513
-
-
84873669437
-
In situ TEM of two-phase lithiation of amorphous silicon nanospheres
-
McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M.; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758-764.
-
(2013)
Nano Lett.
, vol.13
, pp. 758-764
-
-
McDowell, M.T.1
Lee, S.W.2
Harris, J.T.3
Korgel, B.A.4
Wang, C.M.5
Nix, W.D.6
Cui, Y.7
-
514
-
-
84862281347
-
A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
-
Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.
-
(2012)
Nano Lett.
, vol.12
, pp. 3315-3321
-
-
Liu, N.1
Wu, H.2
McDowell, M.T.3
Yao, Y.4
Wang, C.M.5
Cui, Y.6
-
515
-
-
84870848818
-
Tracking lithium transport and electrochemical reactions in nanoparticles
-
Wang, F.; Yu, H.-C.; Chen, M.-H.; Wu, L. J.; Pereira, N.; Thornton, K.; van der Ven, A.; Zhu, Y. M.; Amatucci, G. G.; Graetz, J. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 2012, 3, 1201.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1201
-
-
Wang, F.1
Yu, H.-C.2
Chen, M.-H.3
Wu, L.J.4
Pereira, N.5
Thornton, K.6
van der Ven, A.7
Zhu, Y.M.8
Amatucci, G.G.9
Graetz, J.10
-
516
-
-
79956067241
-
Recharging lithium battery research with first-principles methods
-
Ceder, G.; Hautier, G.; Jain, A.; Ong, S. P. Recharging lithium battery research with first-principles methods. MRS Bull. 2012, 37, 185-191.
-
(2012)
MRS Bull.
, vol.37
, pp. 185-191
-
-
Ceder, G.1
Hautier, G.2
Jain, A.3
Ong, S.P.4
-
517
-
-
79959855903
-
3D lithium ion batteries-from fundamentals to fabrication
-
Roberts, M.; Johns, P.; Owen, J.; Brandell, D.; Edstrom, K.; El Enany, G.; Guery, C.; Golodnitsky, D.; Lacey, M.; Lecoeur, C.; et al. 3D lithium ion batteries-from fundamentals to fabrication. J. Mater. Chem. 2011, 21, 9876-9890.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 9876-9890
-
-
Roberts, M.1
Johns, P.2
Owen, J.3
Brandell, D.4
Edstrom, K.5
El Enany, G.6
Guery, C.7
Golodnitsky, D.8
Lacey, M.9
Lecoeur, C.10
-
518
-
-
84865225600
-
3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries
-
3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 2012, 5, 8538-8542.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8538-8542
-
-
Ma, D.1
Cao, Z.2
Wang, H.3
Huang, X.4
Wang, L.5
Zhang, X.6
-
519
-
-
84873151973
-
Particulate inverse opal carbon electrodes for lithium-ion batteries
-
Kang, D.-Y.; Kim, S.-O.; Chae, Y. J.; Lee, J. K.; Moon, J. H. Particulate inverse opal carbon electrodes for lithium-ion batteries. Langmuir2013, 29, 1192-1198.
-
(2013)
Langmuir
, vol.29
, pp. 1192-1198
-
-
Kang, D.-Y.1
Kim, S.-O.2
Chae, Y.J.3
Lee, J.K.4
Moon, J.H.5
-
520
-
-
70349952357
-
Self-supported three-dimensional nanoelectrodes for microbattery applications
-
Cheah, S. K.; Perre, E.; Rooth, M.; Fondell, M.; Hårsta, A.; Nyholm, L.; Boman, M.; Gustafsson, T.; Lu, J.; Simon, P.; Edström, K. Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 2009, 9, 3230-3233.
-
(2009)
Nano Lett.
, vol.9
, pp. 3230-3233
-
-
Cheah, S.K.1
Perre, E.2
Rooth, M.3
Fondell, M.4
Hårsta, A.5
Nyholm, L.6
Boman, M.7
Gustafsson, T.8
Lu, J.9
Simon, P.10
Edström, K.11
-
521
-
-
79955830199
-
Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes
-
Zhang, H.; Yu, X.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277-281.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 277-281
-
-
Zhang, H.1
Yu, X.2
Braun, P.V.3
-
522
-
-
84860745752
-
Electrocatalysts for nonaqueous lithium-air batteries: Status, challenges, and perspective
-
Shao, Y.; Park, S.; Xiao, J.; Zhang, J.-G.; Wang, Y.; Liu, J. Electrocatalysts for nonaqueous lithium-air batteries: Status, challenges, and perspective. ACS Catal. 2012, 2, 844-857.
-
(2012)
ACS Catal.
, vol.2
, pp. 844-857
-
-
Shao, Y.1
Park, S.2
Xiao, J.3
Zhang, J.-G.4
Wang, Y.5
Liu, J.6
-
523
-
-
84875641198
-
Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance
-
Lu, Y.; Gallant, B.; Kwabi, D.; Harding, J.; Mitchell, R.; Whittingham, M. S.; S-H, Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750-768.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 750-768
-
-
Lu, Y.1
Gallant, B.2
Kwabi, D.3
Harding, J.4
Mitchell, R.5
Whittingham, M.S.6
-
525
-
-
77954754227
-
Lithium?air battery: Promise and challenges
-
Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium?air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193-2203.
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2193-2203
-
-
Girishkumar, G.1
McCloskey, B.2
Luntz, A.C.3
Swanson, S.4
Wilcke, W.5
-
526
-
-
84873969908
-
Making Li-air batteries rechargeable: Material challenges
-
Shao, Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J.-G.; Wang, Y.; Liu, J. Making Li-air batteries rechargeable: Material challenges. Adv. Funct. Mater. 2013, 23, 987-1004.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 987-1004
-
-
Shao, Y.1
Ding, F.2
Xiao, J.3
Zhang, J.4
Xu, W.5
Park, S.6
Zhang, J.-G.7
Wang, Y.8
Liu, J.9
-
527
-
-
84865279343
-
Recent advances in the development of Li-air batteries
-
Capsoni, D.; Bini, M.; Ferrari, S.; Quartarone, E.; Mustarelli, P. Recent advances in the development of Li-air batteries. J. Power Sources2012, 220, 253-263.
-
(2012)
J. Power Sources
, vol.220
, pp. 253-263
-
-
Capsoni, D.1
Bini, M.2
Ferrari, S.3
Quartarone, E.4
Mustarelli, P.5
|