-
2
-
-
83655163714
-
A novel hybrid cnn-svm classifier for recognizing handwritten digits
-
X.-X. Niu, and C.Y. Suen A novel hybrid cnn-svm classifier for recognizing handwritten digits Pattern Recognit. 45 4 2012 1318 1325
-
(2012)
Pattern Recognit.
, vol.45
, Issue.4
, pp. 1318-1325
-
-
Niu, X.-X.1
Suen, C.Y.2
-
3
-
-
0043166439
-
Handwritten digit recognition benchmarking of state-of-the-art techniques
-
C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa Handwritten digit recognition benchmarking of state-of-the-art techniques Pattern Recognit. 36 10 2003 2271 2285
-
(2003)
Pattern Recognit.
, vol.36
, Issue.10
, pp. 2271-2285
-
-
Liu, C.-L.1
Nakashima, K.2
Sako, H.3
Fujisawa, H.4
-
4
-
-
84865827244
-
Dynamical svm for time series classification
-
Springer, Berlin, Germany
-
R. Huerta, S. Vembu, M.K. Muezzinoglu, A. Vergara, Dynamical svm for time series classification, in: Pattern Recognition, Springer, Berlin, Germany, 2012, pp. 216-225.
-
(2012)
Pattern Recognition
, pp. 216-225
-
-
Huerta, R.1
Vembu, S.2
Muezzinoglu, M.K.3
Vergara, A.4
-
5
-
-
24044470614
-
Clustering of time series dataa survey
-
T. Warren Liao Clustering of time series dataa survey Pattern Recognit. 38 11 2005 1857 1874
-
(2005)
Pattern Recognit.
, vol.38
, Issue.11
, pp. 1857-1874
-
-
Warren Liao, T.1
-
6
-
-
80855132403
-
Sparse and stable gene selection with consensus svm-rfe
-
E. Tapia, P. Bulacio, and L. Angelone Sparse and stable gene selection with consensus svm-rfe Pattern Recognit. Lett. 33 2 2012 164 172
-
(2012)
Pattern Recognit. Lett.
, vol.33
, Issue.2
, pp. 164-172
-
-
Tapia, E.1
Bulacio, P.2
Angelone, L.3
-
7
-
-
33748416594
-
Incremental wrapper-based gene selection from microarray data for cancer classification
-
R. Ruiz, J.C. Riquelme, and J.S. Aguilar-Ruiz Incremental wrapper-based gene selection from microarray data for cancer classification Pattern Recognit. 39 12 2006 2383 2392
-
(2006)
Pattern Recognit.
, vol.39
, Issue.12
, pp. 2383-2392
-
-
Ruiz, R.1
Riquelme, J.C.2
Aguilar-Ruiz, J.S.3
-
8
-
-
33749445935
-
Active learning for image retrieval with co-svm
-
J. Cheng, and K. Wang Active learning for image retrieval with co-svm Pattern Recognit. 40 1 2007 330 334
-
(2007)
Pattern Recognit.
, vol.40
, Issue.1
, pp. 330-334
-
-
Cheng, J.1
Wang, K.2
-
9
-
-
33749264994
-
A survey of content-based image retrieval with high-level semantics
-
Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma A survey of content-based image retrieval with high-level semantics Pattern Recognit. 40 1 2007 262 282
-
(2007)
Pattern Recognit.
, vol.40
, Issue.1
, pp. 262-282
-
-
Liu, Y.1
Zhang, D.2
Lu, G.3
Ma, W.-Y.4
-
10
-
-
77957016484
-
Multi-model classification method in heterogeneous image databases
-
R. Kachouri, K. Djemal, and H. Maaref Multi-model classification method in heterogeneous image databases Pattern Recognit. 43 12 2010 4077 4088
-
(2010)
Pattern Recognit.
, vol.43
, Issue.12
, pp. 4077-4088
-
-
Kachouri, R.1
Djemal, K.2
Maaref, H.3
-
15
-
-
0022909661
-
Toward memory-based reasoning
-
C. Stanfill, and D. Waltz Toward memory-based reasoning Commun. ACM 29 12 1986 1213 1228
-
(1986)
Commun. ACM
, vol.29
, Issue.12
, pp. 1213-1228
-
-
Stanfill, C.1
Waltz, D.2
-
17
-
-
22944478488
-
Discriminatory analysis nonparametric discrimination consistency properties
-
E. Fix, and J.L. Hodges Jr. Discriminatory analysis. nonparametric discrimination consistency properties Int. Stat. Rev./Rev. Int. Stat. 1989 238 247
-
(1989)
Int. Stat. Rev./Rev. Int. Stat.
, pp. 238-247
-
-
Fix, E.1
Hodges, J.L.2
-
19
-
-
2442536791
-
Dissimilarity learning for nominal data
-
V. Cheng, C.-H. Li, J.T. Kwok, and C.-K. Li Dissimilarity learning for nominal data Pattern Recognit. 37 7 2004 1471 1477
-
(2004)
Pattern Recognit.
, vol.37
, Issue.7
, pp. 1471-1477
-
-
Cheng, V.1
Li, C.-H.2
Kwok, J.T.3
Li, C.-K.4
-
20
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee Choosing multiple parameters for support vector machines Mach. Learn. 46 1 2002 131 159
-
(2002)
Mach. Learn.
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
21
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J. Burges A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discov. 2 2 1998 121 167
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.1
-
22
-
-
84899010634
-
Model selection for support vector machines
-
O. Chapelle, V. Vapnik, Model selection for support vector machines, in: Advances in Neural Information Processing Systems, vol. 12, 1999, pp. 230-236.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
, pp. 230-236
-
-
Chapelle, O.1
Vapnik, V.2
-
23
-
-
21844440579
-
Core vector machines fast svm training on very large data sets
-
I.W. Tsang, J.T. Kwok, and P.-M. Cheung Core vector machines fast svm training on very large data sets J. Mach. Learn. Res. 6 1 2006 363
-
(2006)
J. Mach. Learn. Res.
, vol.6
, Issue.1
, pp. 363
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
24
-
-
84860214044
-
A survey of evolutionary algorithms for decision-tree induction
-
R.C. Barros, M.P. Basgalupp, A. de Carvalho, and A.A. Freitas A survey of evolutionary algorithms for decision-tree induction IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 42 3 2012 291 312
-
(2012)
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
, vol.42
, Issue.3
, pp. 291-312
-
-
Barros, R.C.1
Basgalupp, M.P.2
De Carvalho, A.3
Freitas, A.A.4
-
25
-
-
37549018049
-
Top 10 algorithms in data mining
-
X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A. Ng, B. Liu, and P.S. Yu Top 10 algorithms in data mining Knowl. Inf. Syst. 14 1 2008 1 37
-
(2008)
Knowl. Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Ross Quinlan, J.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
-
26
-
-
0034541162
-
Cascade generalization
-
J. Gama, and P. Brazdil Cascade generalization Mach. Learn. 41 3 2000 315 343
-
(2000)
Mach. Learn.
, vol.41
, Issue.3
, pp. 315-343
-
-
Gama, J.1
Brazdil, P.2
-
27
-
-
37249068469
-
-
Springer, Berlin, Germany
-
J. Maudes, J. J. Rodríguez, C. García-Osorio, Cascading for nominal data, in: Multiple Classifier Systems, Springer, Berlin, Germany, 2007, pp. 231-240.
-
(2007)
Cascading for Nominal Data, In: Multiple Classifier Systems
, pp. 231-240
-
-
Maudes, J.1
-
28
-
-
33646843418
-
Support vector classification with nominal attributes
-
Springer, Berlin, Germany
-
Y. Tian, N. Deng, Support vector classification with nominal attributes, in: Computational Intelligence and Security, Springer, Berlin, Germany, 2005, pp. 586-591.
-
(2005)
Computational Intelligence and Security
, pp. 586-591
-
-
Tian, Y.1
Deng, N.2
-
29
-
-
70350676631
-
Margin and radius based multiple kernel learning
-
Springer, Berlin, Germany
-
H. Do, A. Kalousis, A. Woznica, M. Hilario, Margin and radius based multiple kernel learning, in: Machine Learning and Knowledge Discovery in Databases, Springer, Berlin, Germany, 2009, pp. 330-343.
-
(2009)
Machine Learning and Knowledge Discovery in Databases
, pp. 330-343
-
-
Do, H.1
Kalousis, A.2
Woznica, A.3
Hilario, M.4
-
32
-
-
56749117943
-
In defense of one-vs-all classification
-
R. Rifkin, and A. Klautau In defense of one-vs-all classification J. Mach. Learn. Res. 5 2004 101 141
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 101-141
-
-
Rifkin, R.1
Klautau, A.2
-
33
-
-
77952542640
-
Tuning svm parameters by using a hybrid clpso-bfgs algorithm
-
S. Li, and M. Tan Tuning svm parameters by using a hybrid clpso-bfgs algorithm Neurocomputing 73 10 2010 2089 2096
-
(2010)
Neurocomputing
, vol.73
, Issue.10
, pp. 2089-2096
-
-
Li, S.1
Tan, M.2
-
34
-
-
33750124478
-
Efficient parameter selection for support vector machines in classification and regression via model-based global optimization
-
IEEE, New Jersey, America
-
H. Frohlich, A. Zell, Efficient parameter selection for support vector machines in classification and regression via model-based global optimization, in: IJCNN'05. Proceedings of 2005 IEEE International Joint Conference on Neural Networks, vol. 3, IEEE, New Jersey, America, 2005, pp. 1431-1436.
-
(2005)
IJCNN'05. Proceedings of 2005 IEEE International Joint Conference on Neural Networks
, vol.3
, pp. 1431-1436
-
-
Frohlich, H.1
Zell, A.2
-
35
-
-
84857855190
-
Random search for hyper-parameter optimization
-
J. Bergstra, and Y. Bengio Random search for hyper-parameter optimization J. Mach. Learn. Res. 13 2012 281 305
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
37
-
-
76749092270
-
The weka data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten The weka data mining software: an update ACM SIGKDD Explor. Newslett. 11 1 2009 10 18
-
(2009)
ACM SIGKDD Explor. Newslett.
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
38
-
-
80052727061
-
Spectralcat categorical spectral clustering of numerical and nominal data
-
G. David, and A. Averbuch Spectralcat categorical spectral clustering of numerical and nominal data Pattern Recognit. 45 1 2012 416 433
-
(2012)
Pattern Recognit.
, vol.45
, Issue.1
, pp. 416-433
-
-
David, G.1
Averbuch, A.2
-
39
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
41
-
-
77957583037
-
Boosting support vector machines for imbalanced data sets
-
B.X. Wang, and N. Japkowicz Boosting support vector machines for imbalanced data sets Knowl. Inf. Syst. 25 1 2010 1 20
-
(2010)
Knowl. Inf. Syst.
, vol.25
, Issue.1
, pp. 1-20
-
-
Wang, B.X.1
Japkowicz, N.2
|