-
1
-
-
85162387277
-
Distributed delayed stochastic optimization
-
Agarwal, A. and Duchi, J. Distributed delayed stochastic optimization. In NIPS, 2011.
-
(2011)
NIPS
-
-
Agarwal, A.1
Duchi, J.2
-
2
-
-
80053451705
-
Parallel coordinate descent for l1-regularized loss minimization
-
Bradley, J.K., Kyrola, A., Bickson, D., and Guestrin, C. Parallel coordinate descent for l1-regularized loss minimization. In ICML, 2011.
-
(2011)
ICML
-
-
Bradley, J.K.1
Kyrola, A.2
Bickson, D.3
Guestrin, C.4
-
3
-
-
85162498265
-
Better mini-batch algorithms via accelerated gradient methods
-
Cotter, A., Shamir, O., Srebro, N., and Sridharan, K. Better mini-batch algorithms via accelerated gradient methods. In NIPS, 2011.
-
(2011)
NIPS
-
-
Cotter, A.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
4
-
-
84857527621
-
Optimal distributed online prediction using minibatches
-
Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. Optimal distributed online prediction using minibatches. Journal of Machine Learning Research, 13: 165-202, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 165-202
-
-
Dekel, O.1
Gilad-Bachrach, R.2
Shamir, O.3
Xiao, L.4
-
5
-
-
84897524172
-
Randomized smoothing for (parallel) stochastic optimization
-
Duchi, John, Bartlett, Peter L., and Wainwright, Martin J. Randomized smoothing for (parallel) stochastic optimization. In ICML, 2012a.
-
(2012)
ICML
-
-
Duchi, J.1
Bartlett, P.L.2
Wainwright, M.J.3
-
6
-
-
84865694209
-
Randomized smoothing for stochastic optimization
-
June
-
Duchi, John, Bartlett, Peter L., and Wainwright, Martin J. Randomized smoothing for stochastic optimization. SIAM Journal on Optimization, 22(2): 674-701, June 2012b.
-
(2012)
SIAM Journal on Optimization
, vol.22
, Issue.2
, pp. 674-701
-
-
Duchi, J.1
Bartlett, P.L.2
Wainwright, M.J.3
-
7
-
-
56449086680
-
A dual coordinate descent method for large-scale linear svm
-
Hsieh, C-J., Chang, K-W., Lin, C-J., Keerthi, S.S., and Sundarajan, S. A dual coordinate descent method for large-scale linear svm. In ICML, 2008.
-
(2008)
ICML
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.S.4
Sundarajan, S.5
-
8
-
-
84923396670
-
-
arXiv:1103.4204
-
Hsu, D., Karampatziakis, N., Langford, J., and Smola, A. Parallel online learning. arXiv:1103.4204, 2011.
-
(2011)
Parallel Online Learning
-
-
Hsu, D.1
Karampatziakis, N.2
Langford, J.3
Smola, A.4
-
9
-
-
84888875306
-
-
Libsvm
-
Libsvm. Datasets. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ binary.html.
-
Datasets
-
-
-
10
-
-
84865692149
-
Efficiency of coordinate descent methods on huge-scale optimization problems
-
Nesterov, Yu. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optimization, 22:341-362, 2012.
-
(2012)
SIAM J. Optimization
, vol.22
, pp. 341-362
-
-
Nesterov, Yu.1
-
11
-
-
85162467517
-
Hogwild: A lock-free approach to parallelizing stochastic gradient descent
-
Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., and Weinberger, K.Q. (eds.)
-
Niu, F., Recht, B., Re, C., and Wright, S. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., and Weinberger, K.Q. (eds.), NIPS 24, pp. 693-701. 2011.
-
(2011)
NIPS 24
, pp. 693-701
-
-
Niu, F.1
Recht, B.2
Re, C.3
Wright, S.4
-
15
-
-
84897116612
-
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
-
doi: 10.1007/s10107-012-0614-z
-
Richtárik, P. and Takáč, M. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Mathematical Programming, 2013. doi: 10.1007/s10107-012-0614-z.
-
(2013)
Mathematical Programming
-
-
Richtárik, P.1
Takáč, M.2
-
16
-
-
79960131832
-
Stochastic Methods for 11-regularized Loss Minimization
-
Shalev-Shwartz, S. and Tewari, A. Stochastic Methods for 11-regularized Loss Minimization. JMLR, 12: 1865-1892, 2011.
-
(2011)
JMLR
, vol.12
, pp. 1865-1892
-
-
Shalev-Shwartz, S.1
Tewari, A.2
-
18
-
-
79952748054
-
Pegasos: Primal estimated sub-gradient solver for svm
-
Shalev-Shwartz, S.S., Singer, Y., Srebro, N., and Cotter, A. Pegasos: Primal estimated sub-gradient solver for svm. Mathematical Programming: Series A and B- Special Issue on Optimization and Machine Learning, pp. 3-30, 2011.
-
(2011)
Mathematical Programming: Series A and B- Special Issue on Optimization and Machine Learning
, pp. 3-30
-
-
Shalev-Shwartz, S.S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
20
-
-
33749243068
-
Solving large scale linear prediction using stochastic gradient descent algorithms
-
Zhang, T. Solving large scale linear prediction using stochastic gradient descent algorithms. In ICML, 2004.
-
(2004)
ICML
-
-
Zhang, T.1
|