메뉴 건너뛰기




Volumn 19, Issue 2, 2015, Pages 728-734

Rule extraction from support vector machines using ensemble learning approach: An application for diagnosis of diabetes

Author keywords

diagnosis of diabetes; ensemble learning; random forest (RF); rule extraction; support vector machines (SVMs)

Indexed keywords

DECISION TREES; DIAGNOSIS; EXTRACTION; HYBRID SYSTEMS; RANDOM FORESTS; STATISTICAL METHODS; SUPPORT VECTOR MACHINES; SURVEYS;

EID: 84924674527     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2014.2325615     Document Type: Article
Times cited : (115)

References (41)
  • 1
    • 82955247909 scopus 로고    scopus 로고
    • IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030
    • D. Whiting, L. Guariguata, C. Weil, and J. Shaw, "IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030, " Diabetes Res. Clin. Pract., vol. 94, pp. 311-321, 2011.
    • (2011) Diabetes Res. Clin. Pract. , vol.94 , pp. 311-321
    • Whiting, D.1    Guariguata, L.2    Weil, C.3    Shaw, J.4
  • 2
    • 84865957851 scopus 로고    scopus 로고
    • International Diabetes Federation [Online]. Available
    • International Diabetes Federation. (2011). IDF Diabetes Atlas, 5th ed. Brussels, Belgium. [Online]. Available: http://www.idf.org/diabetesatlas
    • (2011) IDF Diabetes Atlas 5th Ed. Brussels Belgium
  • 3
    • 84870665909 scopus 로고    scopus 로고
    • Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: A systematic review
    • N. Brown, J. Critchley, P. Bogowicz, M. Mayige, and N. Unwin, "Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: A systematic review, " Diabetes Res. Clin. Pract., vol. 98, pp. 369-385, 2012.
    • (2012) Diabetes Res. Clin. Pract. , vol.98 , pp. 369-385
    • Brown, N.1    Critchley, J.2    Bogowicz, P.3    Mayige, M.4    Unwin, N.5
  • 4
    • 83755173339 scopus 로고    scopus 로고
    • Riskmodels and scores for type 2 diabetes: Systematic review
    • D. Noble, R. Mathur, T. Dent, C. Meads, and T. Greenhalgh, "Riskmodels and scores for type 2 diabetes: Systematic review, " BMJ., vol. 343, pp. 1-31, 2011.
    • (2011) BMJ , vol.343 , pp. 1-31
    • Noble, D.1    Mathur, R.2    Dent, T.3    Meads, C.4    Greenhalgh, T.5
  • 5
    • 48649092511 scopus 로고    scopus 로고
    • Diabetes risk calculator: A simple tool for detecting undiagnosed diabetes and prediabetes
    • K. Heikes, D. Eddy, B. Arondekar, and L. Schlessinger, "Diabetes risk calculator: A simple tool for detecting undiagnosed diabetes and prediabetes, " Diabetes Care, vol. 31, no. 5, pp. 1040-1045, 2008.
    • (2008) Diabetes Care , vol.31 , Issue.5 , pp. 1040-1045
    • Heikes, K.1    Eddy, D.2    Arondekar, B.3    Schlessinger, L.4
  • 7
    • 50249167180 scopus 로고    scopus 로고
    • Detection of impaired glucose tolerance and undiagnosed type 2 diabetes in UK South Asians: An effective screening strategy
    • M. W. Hanif, G. Valsamakis, A. Dixon, A. Boutsiadis, A. F. Jones, A. H. Barnett, and S. Kumar, , "Detection of impaired glucose tolerance and undiagnosed type 2 diabetes in UK South Asians: An effective screening strategy, " Diabetes, Obesity Metabolism., vol. 10, no. 9, pp. 755-762, 2008.
    • (2008) Diabetes, Obesity Metabolism. , vol.10 , Issue.9 , pp. 755-762
    • Hanif, M.W.1    Valsamakis, G.2    Dixon, A.3    Boutsiadis, A.4    Jones, A.F.5    Barnett, A.H.6    Kumar, S.7
  • 8
    • 0035513708 scopus 로고    scopus 로고
    • Performance of recommended screening tests for undiagnosed diabetes and dysglycemia
    • D. B. Rolka, K. M. Narayan, T. J. Thompson, J. Lindenmayer, and D. O. Stuart, "Performance of recommended screening tests for undiagnosed diabetes and dysglycemia, " Diabetes Care, vol. 24, no. 11, pp. 1899-1903, 2001.
    • (2001) Diabetes Care , vol.24 , Issue.11 , pp. 1899-1903
    • Rolka, D.B.1    Narayan, K.M.2    Thompson, T.J.3    Lindenmayer, J.4    Stuart, D.O.5
  • 10
    • 84865716372 scopus 로고    scopus 로고
    • Survey of diabetes risk assessment tools: Concepts, structure and performance
    • T. Thitaporn, D. Newby, J. Schneider, and S. C. Li, "Survey of diabetes risk assessment tools: Concepts, structure and performance, " Diabetes/Metabolism Res. Rev., vol. 28, pp. 485-498, 2012.
    • (2012) Diabetes/Metabolism Res. Rev. , vol.28 , pp. 485-498
    • Thitaporn, T.1    Newby, D.2    Schneider, J.3    Li, S.C.4
  • 11
    • 79960505344 scopus 로고    scopus 로고
    • Risk assessment tools for identifying individuals at risk of developing type 2 diabetes
    • B. Buijsse, R. Simmons, S. Griffin, and M. Schulze, "Risk assessment tools for identifying individuals at risk of developing type 2 diabetes, " Epidemiol. Rev., vol. 33, pp. 46-62, 2011.
    • Epidemiol. Rev. , vol.33 , Issue.2011 , pp. 46-62
    • Buijsse, B.1    Simmons, R.2    Griffin, S.3    Schulze, M.4
  • 12
    • 63649124233 scopus 로고    scopus 로고
    • Tools for predicting the risk of type 2 diabetes in daily practice
    • P. E. H. Schwarz, J. Li, J. Lindstrom, and J. Tuomilehto, "Tools for predicting the risk of type 2 diabetes in daily practice, " Horm. Metab. Res., vol. 41, pp. 86-97, 2009.
    • (2009) Horm. Metab. Res. , vol.41 , pp. 86-97
    • Schwarz, P.E.H.1    Li, J.2    Lindstrom, J.3    Tuomilehto, J.4
  • 13
    • 84885223669 scopus 로고    scopus 로고
    • Real-data comparison of data mining methods in prediction of diabetes in Iran
    • L. Tapak, H. Mahjub, O. Hamidi, and J. Poorolajal, "Real-data comparison of data mining methods in prediction of diabetes in Iran, " Healthcare Informat. Res., vol. 19, no. 3, pp. 177-185, 2013.
    • (2013) Healthcare Informat. Res. , vol.19 , Issue.3 , pp. 177-185
    • Tapak, L.1    Mahjub, H.2    Hamidi, O.3    Poorolajal, J.4
  • 14
    • 84879872667 scopus 로고    scopus 로고
    • Visual data mining techniques for classification of diabetic patients
    • C. M. Velu and K. R. Kashwan, "Visual data mining techniques for classification of diabetic patients, " in Proc. IEEE 3rd Int. Adv. Comput. Conf., 2013, pp. 1070-1075.
    • (2013) Proc. IEEE 3rd Int. Adv. Comput. Conf. , pp. 1070-1075
    • Velu, C.M.1    Kashwan, K.R.2
  • 15
    • 84862564076 scopus 로고    scopus 로고
    • A hybrid approach for improving the accuracy of classification algorithms in data mining
    • O. Akgobek, "A hybrid approach for improving the accuracy of classification algorithms in data mining, " Energy Edu. Sci. Technol. Part A-Energy Sci. Res., vol. 29, no. 2, pp. 1039-1054, 2012.
    • (2012) Energy Edu. Sci. Technol. Part A-Energy Sci. Res. , vol.29 , Issue.2 , pp. 1039-1054
    • Akgobek, O.1
  • 17
    • 77954597013 scopus 로고    scopus 로고
    • Intelligible support vector machines for diagnosis of diabetes mellitus
    • Jul.
    • N. H. Barakat, A. P. Bradley, and M. N. H. Barakat, "Intelligible support vector machines for diagnosis of diabetes mellitus, " IEEE Trans. Inform. Technol. Biomed., vol. 14, no. 4, pp. 1114-1120, Jul. 2010.
    • (2010) IEEE Trans. Inform. Technol. Biomed. , vol.14 , Issue.4 , pp. 1114-1120
    • Barakat, N.H.1    Bradley, A.P.2    Barakat, M.N.H.3
  • 18
    • 84862658269 scopus 로고    scopus 로고
    • Data-mining technologies for diabetes: A systematic review
    • M. Marinov and I. Yoo, "Data-mining technologies for diabetes: A systematic review, " J. Diabetes Sci. Technol., vol. 5, no. 6, pp. 1549-1556, 2011.
    • (2011) J. Diabetes Sci. Technol. , vol.5 , Issue.6 , pp. 1549-1556
    • Marinov, M.1    Yoo, I.2
  • 19
    • 34249285900 scopus 로고    scopus 로고
    • An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
    • K. Polat, and S. Guenes, "An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease, " Digit. Signal Process., vol. 17, no. 4, pp. 702-710, 2007.
    • (2007) Digit. Signal Process. , vol.17 , Issue.4 , pp. 702-710
    • Polat, K.1    Guenes, S.2
  • 20
    • 38549130585 scopus 로고    scopus 로고
    • Data mining the PIMA dataset using rough set theory with a special emphasis on rule reduction
    • A. Khan and K. Revett, "Data mining the PIMA dataset using rough set theory with a special emphasis on rule reduction, " in Proc. INMIC 8th Int. Multitopic Conf., 2004, pp. 334-339.
    • (2004) Proc. INMIC 8th Int. Multitopic Conf. , pp. 334-339
    • Khan, A.1    Revett, K.2
  • 21
    • 34247555584 scopus 로고    scopus 로고
    • Rule extraction from support vector machines: A sequential covering approach
    • Jun.
    • N. H. Barakat and A. P. Bradley, "Rule extraction from support vector machines: A sequential covering approach, " IEEE Trans. Knowl. Data Eng., vol. 19, no. 6, pp. 729-741, Jun. 2007.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.6 , pp. 729-741
    • Barakat, N.H.1    Bradley, A.P.2
  • 22
    • 33745202712 scopus 로고    scopus 로고
    • Eclectic rule-extraction from support vector machines
    • N. Barakat and J. Diederich, "Eclectic rule-extraction from support vector machines, " Int. J. Comput. Intell., vol. 2, no. 1, pp. 59-62, 2005.
    • (2005) Int. J. Comput. Intell. , vol.2 , Issue.1 , pp. 59-62
    • Barakat, N.1    Diederich, J.2
  • 27
    • 70350775041 scopus 로고    scopus 로고
    • Learning-based rule-extraction from support vector machines: Performance on benchmark data sets
    • N. Barakat and J. Diederich, "Learning-based rule-extraction from support vector machines: Performance on benchmark data sets, " in Proc. 14th Int. Conf. Comput. Theory Appl., 2004, pp. 178-190.
    • (2004) Proc. 14th Int. Conf. Comput. Theory Appl. , pp. 178-190
    • Barakat, N.1    Diederich, J.2
  • 28
    • 34447292534 scopus 로고    scopus 로고
    • Comprehensible credit scoringmodels using rule extraction from support vectormachines
    • D. Martens, B. Baesens, T. V. Gestel, and J. Vanthienen, "Comprehensible credit scoringmodels using rule extraction from support vectormachines, " Eur. J. Oper. Res., vol. 183, no. 3, pp. 1466-1476, 2006.
    • (2006) Eur. J. Oper. Res. , vol.183 , Issue.3 , pp. 1466-1476
    • Martens, D.1    Baesens, B.2    Gestel, T.V.3    Vanthienen, J.4
  • 30
    • 68549115709 scopus 로고    scopus 로고
    • Decompositional rule extraction from support vector machines by active learning
    • Feb.
    • D. Martens, B. Baesens, and T.V.Gestel, "Decompositional rule extraction from support vector machines by active learning, " IEEE Trans. Knowl. Data Eng., vol. 21, no. 2, pp. 178-191, Feb. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.2 , pp. 178-191
    • Martens, D.1    Baesens, B.2    Gestel, T.V.3
  • 31
    • 78449259260 scopus 로고    scopus 로고
    • Rule extraction from support vector machine using modified active learning based approach: An application to CRM
    • M. A. H. Farquad, V. Ravi, and R. S. Bapi, "Rule extraction from support vector machine using modified active learning based approach: An application to CRM, " Knowl.-Based Intell. Inform. Eng. Syst., vol. 6276, pp. 461-470, 2010.
    • (2010) Knowl.-Based Intell. Inform. Eng. Syst. , vol.6276 , pp. 461-470
    • Farquad, M.A.H.1    Ravi, V.2    Bapi, R.S.3
  • 32
    • 63049116798 scopus 로고    scopus 로고
    • Rule extraction using support vector machine based hybrid classifier
    • M. A. H. Farquad, V. Ravi, and R. S. Bapi, "Rule extraction using support vector machine based hybrid classifier, " in Proc. TENCON IEEE Region 10 Conf., 2008, pp. 1-6.
    • (2008) Proc. TENCON IEEE Region 10 Conf. , pp. 1-6
    • Farquad, M.A.H.1    Ravi, V.2    Bapi, R.S.3
  • 33
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learning, vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 34
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines, "
    • C. C Chang and C. J. Lin, "LIBSVM: A library for support vector machines, " ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 35
    • 84859414659 scopus 로고    scopus 로고
    • Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
    • C. Antonio, S. Jamie, and K. Ender, "Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning, " Found. Trends Comput. Vision, vol. 7, pp. 81-227, 2011.
    • (2011) Found. Trends Comput. Vision , vol.7 , pp. 81-227
    • Antonio, C.1    Jamie, S.2    Ender, K.3
  • 36
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • L. Kuncheva and C.Whitaker, "Measures of diversity in classifier ensembles, " Mach. Learning, vol. 51, pp. 181-207, 2010.
    • (2010) Mach. Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 37
    • 84868207575 scopus 로고    scopus 로고
    • Multilevel examination of diabetes in modernising china: What elements of urbanisation are most associated with diabetes?
    • S. M. Attard, A. H. Herring, E. J. Mayer-Davis, B. M. Popkin, J. B. Meigs, and P.Gordon-Larsen, "Multilevel examination of diabetes in modernising china: What elements of urbanisation are most associated with diabetes?" Diabetologia, vol. 55, no. 12, pp. 3182-3192, 2012.
    • (2012) Diabetologia , vol.55 , Issue.12 , pp. 3182-3192
    • Attard, S.M.1    Herring, A.H.2    Mayer-Davis, E.J.3    Popkin, B.M.4    Meigs, J.B.5    Gordon-Larsen, P.6
  • 38
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y Saeys, I. Inza, and P Larrañaga, "A review of feature selection techniques in bioinformatics, " Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 39
    • 84924703524 scopus 로고    scopus 로고
    • Thalassemia knowledge elicitation using data engineering: PCA pearson's chi square and machine learning
    • P. Paokanta, "Thalassemia knowledge elicitation using data engineering: PCA, pearson's chi square and machine learning, " Int. J. Comput. Theory Eng., vol. 4, no. 5, pp. 702-706, 2012.
    • (2012) Int. J. Comput. Theory Eng. , vol.4 , Issue.5 , pp. 702-706
    • Paokanta, P.1
  • 41
    • 84888198867 scopus 로고    scopus 로고
    • Random forest for bioinformatics
    • New York, NY, USA: Springer
    • Q. Yanjun, "Random forest for bioinformatics, " in Ensemble Machine Learning. New York, NY, USA: Springer, 2012, pp. 307-323.
    • (2012) Ensemble Machine Learning , pp. 307-323
    • Yanjun, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.