-
1
-
-
82955247909
-
IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030
-
D. Whiting, L. Guariguata, C. Weil, and J. Shaw, "IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030, " Diabetes Res. Clin. Pract., vol. 94, pp. 311-321, 2011.
-
(2011)
Diabetes Res. Clin. Pract.
, vol.94
, pp. 311-321
-
-
Whiting, D.1
Guariguata, L.2
Weil, C.3
Shaw, J.4
-
2
-
-
84865957851
-
-
International Diabetes Federation [Online]. Available
-
International Diabetes Federation. (2011). IDF Diabetes Atlas, 5th ed. Brussels, Belgium. [Online]. Available: http://www.idf.org/diabetesatlas
-
(2011)
IDF Diabetes Atlas 5th Ed. Brussels Belgium
-
-
-
3
-
-
84870665909
-
Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: A systematic review
-
N. Brown, J. Critchley, P. Bogowicz, M. Mayige, and N. Unwin, "Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: A systematic review, " Diabetes Res. Clin. Pract., vol. 98, pp. 369-385, 2012.
-
(2012)
Diabetes Res. Clin. Pract.
, vol.98
, pp. 369-385
-
-
Brown, N.1
Critchley, J.2
Bogowicz, P.3
Mayige, M.4
Unwin, N.5
-
4
-
-
83755173339
-
Riskmodels and scores for type 2 diabetes: Systematic review
-
D. Noble, R. Mathur, T. Dent, C. Meads, and T. Greenhalgh, "Riskmodels and scores for type 2 diabetes: Systematic review, " BMJ., vol. 343, pp. 1-31, 2011.
-
(2011)
BMJ
, vol.343
, pp. 1-31
-
-
Noble, D.1
Mathur, R.2
Dent, T.3
Meads, C.4
Greenhalgh, T.5
-
5
-
-
48649092511
-
Diabetes risk calculator: A simple tool for detecting undiagnosed diabetes and prediabetes
-
K. Heikes, D. Eddy, B. Arondekar, and L. Schlessinger, "Diabetes risk calculator: A simple tool for detecting undiagnosed diabetes and prediabetes, " Diabetes Care, vol. 31, no. 5, pp. 1040-1045, 2008.
-
(2008)
Diabetes Care
, vol.31
, Issue.5
, pp. 1040-1045
-
-
Heikes, K.1
Eddy, D.2
Arondekar, B.3
Schlessinger, L.4
-
6
-
-
0034084854
-
Diabetes risk score: Towards earlier detection of type 2 diabetes in general practice
-
S. J. Griffin, P. S. Little, C. N. Hales, A. L. Kinmonth, and N. J.Wareham, "Diabetes risk score: Towards earlier detection of type 2 diabetes in general practice, " Diabetes/Metabolism Res. Rev., vol. 16, pp. 164-171, 2000.
-
(2000)
Diabetes/Metabolism Res. Rev.
, vol.16
, pp. 164-171
-
-
Griffin, S.J.1
Little, P.S.2
Hales, C.N.3
Kinmonth, A.L.4
Wareham, N.J.5
-
7
-
-
50249167180
-
Detection of impaired glucose tolerance and undiagnosed type 2 diabetes in UK South Asians: An effective screening strategy
-
M. W. Hanif, G. Valsamakis, A. Dixon, A. Boutsiadis, A. F. Jones, A. H. Barnett, and S. Kumar, , "Detection of impaired glucose tolerance and undiagnosed type 2 diabetes in UK South Asians: An effective screening strategy, " Diabetes, Obesity Metabolism., vol. 10, no. 9, pp. 755-762, 2008.
-
(2008)
Diabetes, Obesity Metabolism.
, vol.10
, Issue.9
, pp. 755-762
-
-
Hanif, M.W.1
Valsamakis, G.2
Dixon, A.3
Boutsiadis, A.4
Jones, A.F.5
Barnett, A.H.6
Kumar, S.7
-
8
-
-
0035513708
-
Performance of recommended screening tests for undiagnosed diabetes and dysglycemia
-
D. B. Rolka, K. M. Narayan, T. J. Thompson, J. Lindenmayer, and D. O. Stuart, "Performance of recommended screening tests for undiagnosed diabetes and dysglycemia, " Diabetes Care, vol. 24, no. 11, pp. 1899-1903, 2001.
-
(2001)
Diabetes Care
, vol.24
, Issue.11
, pp. 1899-1903
-
-
Rolka, D.B.1
Narayan, K.M.2
Thompson, T.J.3
Lindenmayer, J.4
Stuart, D.O.5
-
9
-
-
77949352311
-
A simple Chinese risk score for undiagnosed diabetes
-
W. G. Gao, Y. H. Dong, Z. C. Pang, H. R. Nan, S. J. Wang, J. Ren, L. Zhang, J. Tuomilehto, and Q. Qiao, "A simple Chinese risk score for undiagnosed diabetes, " Diabetic Med., vol. 27, pp. 274-281, 2010.
-
(2010)
Diabetic Med.
, vol.27
, pp. 274-281
-
-
Gao, W.G.1
Dong, Y.H.2
Pang, Z.C.3
Nan, H.R.4
Wang, S.J.5
Ren, J.6
Zhang, L.7
Tuomilehto, J.8
Qiao, Q.9
-
10
-
-
84865716372
-
Survey of diabetes risk assessment tools: Concepts, structure and performance
-
T. Thitaporn, D. Newby, J. Schneider, and S. C. Li, "Survey of diabetes risk assessment tools: Concepts, structure and performance, " Diabetes/Metabolism Res. Rev., vol. 28, pp. 485-498, 2012.
-
(2012)
Diabetes/Metabolism Res. Rev.
, vol.28
, pp. 485-498
-
-
Thitaporn, T.1
Newby, D.2
Schneider, J.3
Li, S.C.4
-
11
-
-
79960505344
-
Risk assessment tools for identifying individuals at risk of developing type 2 diabetes
-
B. Buijsse, R. Simmons, S. Griffin, and M. Schulze, "Risk assessment tools for identifying individuals at risk of developing type 2 diabetes, " Epidemiol. Rev., vol. 33, pp. 46-62, 2011.
-
Epidemiol. Rev.
, vol.33
, Issue.2011
, pp. 46-62
-
-
Buijsse, B.1
Simmons, R.2
Griffin, S.3
Schulze, M.4
-
12
-
-
63649124233
-
Tools for predicting the risk of type 2 diabetes in daily practice
-
P. E. H. Schwarz, J. Li, J. Lindstrom, and J. Tuomilehto, "Tools for predicting the risk of type 2 diabetes in daily practice, " Horm. Metab. Res., vol. 41, pp. 86-97, 2009.
-
(2009)
Horm. Metab. Res.
, vol.41
, pp. 86-97
-
-
Schwarz, P.E.H.1
Li, J.2
Lindstrom, J.3
Tuomilehto, J.4
-
13
-
-
84885223669
-
Real-data comparison of data mining methods in prediction of diabetes in Iran
-
L. Tapak, H. Mahjub, O. Hamidi, and J. Poorolajal, "Real-data comparison of data mining methods in prediction of diabetes in Iran, " Healthcare Informat. Res., vol. 19, no. 3, pp. 177-185, 2013.
-
(2013)
Healthcare Informat. Res.
, vol.19
, Issue.3
, pp. 177-185
-
-
Tapak, L.1
Mahjub, H.2
Hamidi, O.3
Poorolajal, J.4
-
14
-
-
84879872667
-
Visual data mining techniques for classification of diabetic patients
-
C. M. Velu and K. R. Kashwan, "Visual data mining techniques for classification of diabetic patients, " in Proc. IEEE 3rd Int. Adv. Comput. Conf., 2013, pp. 1070-1075.
-
(2013)
Proc. IEEE 3rd Int. Adv. Comput. Conf.
, pp. 1070-1075
-
-
Velu, C.M.1
Kashwan, K.R.2
-
15
-
-
84862564076
-
A hybrid approach for improving the accuracy of classification algorithms in data mining
-
O. Akgobek, "A hybrid approach for improving the accuracy of classification algorithms in data mining, " Energy Edu. Sci. Technol. Part A-Energy Sci. Res., vol. 29, no. 2, pp. 1039-1054, 2012.
-
(2012)
Energy Edu. Sci. Technol. Part A-Energy Sci. Res.
, vol.29
, Issue.2
, pp. 1039-1054
-
-
Akgobek, O.1
-
16
-
-
80053618101
-
Development of a predictive model for type 2 diabetes mellitus using genetic and clinical data
-
J. Lee, B. Keam, E. J. Jang, M. S. Park, J. Y. Lee, D. B. Kim, C. H. Lee, T. Kim, B. Oh, H. J. Park, K. B. Kwack, C. Chu, and H. L. Kim, "Development of a predictive model for type 2 diabetes mellitus using genetic and clinical data, " Osong Public Health Res. Perspect., vol. 2, no. 2, pp. 75-82, 2011.
-
(2011)
Osong Public Health Res. Perspect.
, vol.2
, Issue.2
, pp. 75-82
-
-
Lee, J.1
Keam, B.2
Jang, E.J.3
Park, M.S.4
Lee, J.Y.5
Kim, D.B.6
Lee, C.H.7
Kim, T.8
Oh, B.9
Park, H.J.10
Kwack, K.B.11
Chu, C.12
Kim, H.L.13
-
17
-
-
77954597013
-
Intelligible support vector machines for diagnosis of diabetes mellitus
-
Jul.
-
N. H. Barakat, A. P. Bradley, and M. N. H. Barakat, "Intelligible support vector machines for diagnosis of diabetes mellitus, " IEEE Trans. Inform. Technol. Biomed., vol. 14, no. 4, pp. 1114-1120, Jul. 2010.
-
(2010)
IEEE Trans. Inform. Technol. Biomed.
, vol.14
, Issue.4
, pp. 1114-1120
-
-
Barakat, N.H.1
Bradley, A.P.2
Barakat, M.N.H.3
-
18
-
-
84862658269
-
Data-mining technologies for diabetes: A systematic review
-
M. Marinov and I. Yoo, "Data-mining technologies for diabetes: A systematic review, " J. Diabetes Sci. Technol., vol. 5, no. 6, pp. 1549-1556, 2011.
-
(2011)
J. Diabetes Sci. Technol.
, vol.5
, Issue.6
, pp. 1549-1556
-
-
Marinov, M.1
Yoo, I.2
-
19
-
-
34249285900
-
An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
-
K. Polat, and S. Guenes, "An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease, " Digit. Signal Process., vol. 17, no. 4, pp. 702-710, 2007.
-
(2007)
Digit. Signal Process.
, vol.17
, Issue.4
, pp. 702-710
-
-
Polat, K.1
Guenes, S.2
-
20
-
-
38549130585
-
Data mining the PIMA dataset using rough set theory with a special emphasis on rule reduction
-
A. Khan and K. Revett, "Data mining the PIMA dataset using rough set theory with a special emphasis on rule reduction, " in Proc. INMIC 8th Int. Multitopic Conf., 2004, pp. 334-339.
-
(2004)
Proc. INMIC 8th Int. Multitopic Conf.
, pp. 334-339
-
-
Khan, A.1
Revett, K.2
-
21
-
-
34247555584
-
Rule extraction from support vector machines: A sequential covering approach
-
Jun.
-
N. H. Barakat and A. P. Bradley, "Rule extraction from support vector machines: A sequential covering approach, " IEEE Trans. Knowl. Data Eng., vol. 19, no. 6, pp. 729-741, Jun. 2007.
-
(2007)
IEEE Trans. Knowl. Data Eng.
, vol.19
, Issue.6
, pp. 729-741
-
-
Barakat, N.H.1
Bradley, A.P.2
-
22
-
-
33745202712
-
Eclectic rule-extraction from support vector machines
-
N. Barakat and J. Diederich, "Eclectic rule-extraction from support vector machines, " Int. J. Comput. Intell., vol. 2, no. 1, pp. 59-62, 2005.
-
(2005)
Int. J. Comput. Intell.
, vol.2
, Issue.1
, pp. 59-62
-
-
Barakat, N.1
Diederich, J.2
-
23
-
-
10944237748
-
Extracting the knowledge embedded in support vector machines
-
X. J. Fu, C. J.Ong, S.Keerthit, andG.G.Hung, "Extracting the knowledge embedded in support vector machines, " in Proc. IEEE Int. Conf. Neural Netw., 2004, pp. 107-112.
-
(2004)
Proc. IEEE Int. Conf. Neural Netw.
, pp. 107-112
-
-
Fu, X.J.1
Ong, C.J.2
Keerthit, S.3
Hung, G.G.4
-
24
-
-
10944251335
-
Rule extraction from support vector machines
-
H. Núñez, C. Angulo, and A. Català, "Rule extraction from support vector machines, " in Proc. Eur. Symp. Artif. Neural Netw., 2002, pp. 291-296.
-
(2002)
Proc. Eur. Symp. Artif. Neural Netw.
, pp. 291-296
-
-
Núñez, H.1
Angulo, C.2
Català, A.3
-
25
-
-
26944483485
-
Rule extraction from trained support vector machines
-
Y. Zhang, H. Su, T. Jia, and J. Chu, "Rule extraction from trained support vector machines, " in Proc. 9th Pacific-Asia Conf. Adv. Knowl. Discovery Data Mining, 2005, pp. 61-70.
-
(2005)
Proc. 9th Pacific-Asia Conf. Adv. Knowl. Discovery Data Mining
, pp. 61-70
-
-
Zhang, Y.1
Su, H.2
Jia, T.3
Chu, J.4
-
26
-
-
32344439223
-
Rule extraction from linear support vector machines
-
G. Fung, S. Sandilya, and R. Rao, "Rule extraction from linear support vector machines, " in Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2005, pp. 32-40.
-
(2005)
Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 32-40
-
-
Fung, G.1
Sandilya, S.2
Rao, R.3
-
27
-
-
70350775041
-
Learning-based rule-extraction from support vector machines: Performance on benchmark data sets
-
N. Barakat and J. Diederich, "Learning-based rule-extraction from support vector machines: Performance on benchmark data sets, " in Proc. 14th Int. Conf. Comput. Theory Appl., 2004, pp. 178-190.
-
(2004)
Proc. 14th Int. Conf. Comput. Theory Appl.
, pp. 178-190
-
-
Barakat, N.1
Diederich, J.2
-
28
-
-
34447292534
-
Comprehensible credit scoringmodels using rule extraction from support vectormachines
-
D. Martens, B. Baesens, T. V. Gestel, and J. Vanthienen, "Comprehensible credit scoringmodels using rule extraction from support vectormachines, " Eur. J. Oper. Res., vol. 183, no. 3, pp. 1466-1476, 2006.
-
(2006)
Eur. J. Oper. Res.
, vol.183
, Issue.3
, pp. 1466-1476
-
-
Martens, D.1
Baesens, B.2
Gestel, T.V.3
Vanthienen, J.4
-
29
-
-
33846984992
-
Fuzzy rule extraction from support vector machines
-
A. C. F. Chaves, M. M. B. R. Vellasco, and R. Tanscheit, "Fuzzy rule extraction from support vector machines, " in Proc. 5th Int. Conf. Hybrid Intell. Syst., 2005, pp. 6-9.
-
(2005)
Proc. 5th Int. Conf. Hybrid Intell. Syst.
, pp. 6-9
-
-
Chaves, A.C.F.1
Vellasco, M.M.B.R.2
Tanscheit, R.3
-
30
-
-
68549115709
-
Decompositional rule extraction from support vector machines by active learning
-
Feb.
-
D. Martens, B. Baesens, and T.V.Gestel, "Decompositional rule extraction from support vector machines by active learning, " IEEE Trans. Knowl. Data Eng., vol. 21, no. 2, pp. 178-191, Feb. 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.2
, pp. 178-191
-
-
Martens, D.1
Baesens, B.2
Gestel, T.V.3
-
31
-
-
78449259260
-
Rule extraction from support vector machine using modified active learning based approach: An application to CRM
-
M. A. H. Farquad, V. Ravi, and R. S. Bapi, "Rule extraction from support vector machine using modified active learning based approach: An application to CRM, " Knowl.-Based Intell. Inform. Eng. Syst., vol. 6276, pp. 461-470, 2010.
-
(2010)
Knowl.-Based Intell. Inform. Eng. Syst.
, vol.6276
, pp. 461-470
-
-
Farquad, M.A.H.1
Ravi, V.2
Bapi, R.S.3
-
32
-
-
63049116798
-
Rule extraction using support vector machine based hybrid classifier
-
M. A. H. Farquad, V. Ravi, and R. S. Bapi, "Rule extraction using support vector machine based hybrid classifier, " in Proc. TENCON IEEE Region 10 Conf., 2008, pp. 1-6.
-
(2008)
Proc. TENCON IEEE Region 10 Conf.
, pp. 1-6
-
-
Farquad, M.A.H.1
Ravi, V.2
Bapi, R.S.3
-
33
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learning, vol. 20, no. 3, pp. 273-297, 1995.
-
(1995)
Mach. Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
34
-
-
79955702502
-
LIBSVM: A library for support vector machines, "
-
C. C Chang and C. J. Lin, "LIBSVM: A library for support vector machines, " ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, 2011.
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, Issue.3
, pp. 1-27
-
-
Chang, C.C.1
Lin, C.J.2
-
35
-
-
84859414659
-
Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
-
C. Antonio, S. Jamie, and K. Ender, "Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning, " Found. Trends Comput. Vision, vol. 7, pp. 81-227, 2011.
-
(2011)
Found. Trends Comput. Vision
, vol.7
, pp. 81-227
-
-
Antonio, C.1
Jamie, S.2
Ender, K.3
-
36
-
-
0037403516
-
Measures of diversity in classifier ensembles
-
L. Kuncheva and C.Whitaker, "Measures of diversity in classifier ensembles, " Mach. Learning, vol. 51, pp. 181-207, 2010.
-
(2010)
Mach. Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
37
-
-
84868207575
-
Multilevel examination of diabetes in modernising china: What elements of urbanisation are most associated with diabetes?
-
S. M. Attard, A. H. Herring, E. J. Mayer-Davis, B. M. Popkin, J. B. Meigs, and P.Gordon-Larsen, "Multilevel examination of diabetes in modernising china: What elements of urbanisation are most associated with diabetes?" Diabetologia, vol. 55, no. 12, pp. 3182-3192, 2012.
-
(2012)
Diabetologia
, vol.55
, Issue.12
, pp. 3182-3192
-
-
Attard, S.M.1
Herring, A.H.2
Mayer-Davis, E.J.3
Popkin, B.M.4
Meigs, J.B.5
Gordon-Larsen, P.6
-
38
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y Saeys, I. Inza, and P Larrañaga, "A review of feature selection techniques in bioinformatics, " Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
39
-
-
84924703524
-
Thalassemia knowledge elicitation using data engineering: PCA pearson's chi square and machine learning
-
P. Paokanta, "Thalassemia knowledge elicitation using data engineering: PCA, pearson's chi square and machine learning, " Int. J. Comput. Theory Eng., vol. 4, no. 5, pp. 702-706, 2012.
-
(2012)
Int. J. Comput. Theory Eng.
, vol.4
, Issue.5
, pp. 702-706
-
-
Paokanta, P.1
-
41
-
-
84888198867
-
Random forest for bioinformatics
-
New York, NY, USA: Springer
-
Q. Yanjun, "Random forest for bioinformatics, " in Ensemble Machine Learning. New York, NY, USA: Springer, 2012, pp. 307-323.
-
(2012)
Ensemble Machine Learning
, pp. 307-323
-
-
Yanjun, Q.1
|