메뉴 건너뛰기




Volumn 5, Issue 6, 2011, Pages 1549-1556

Data-mining technologies for diabetes: A systematic review

Author keywords

Blood glucose level; Classification; Data mining; Diabetes mellitus; Feature selection; Systematic review

Indexed keywords

DATA MINING; DIABETES MELLITUS; HUMAN; METHODOLOGY; REVIEW;

EID: 84862658269     PISSN: None     EISSN: 19322968     Source Type: Journal    
DOI: 10.1177/193229681100500631     Document Type: Review
Times cited : (60)

References (22)
  • 2
    • 84900566083 scopus 로고    scopus 로고
    • Available from: Accessed April 1, 2011
    • IDF Diabetes Atlas. The Economic Impacts of Diabetes. Available from: http://www.diabetesatlas.org/content/economic-impacts-diabetes. Accessed April 1, 2011.
    • The Economic Impacts of Diabetes
  • 4
    • 77955873389 scopus 로고    scopus 로고
    • Data mining technologies for blood glucose and diabetes management
    • Bellazzi R, Abu-Hanna A. Data mining technologies for blood glucose and diabetes management. J Diabetes Sci Technol. 2009;3(3):603-12.
    • (2009) J Diabetes Sci Technol , vol.3 , Issue.3 , pp. 603-612
    • Bellazzi, R.1    Abu-Hanna, A.2
  • 8
    • 72249095489 scopus 로고    scopus 로고
    • Mining administrative and clinical diabetes data with temporal association rules
    • Concaro S, Sacchi L, Cerra C, Bellazzi R. Mining administrative and clinical diabetes data with temporal association rules. Stud Health Technol Inform. 2009;150:574-8.
    • (2009) Stud Health Technol Inform , vol.150 , pp. 574-578
    • Concaro, S.1    Sacchi, L.2    Cerra, C.3    Bellazzi, R.4
  • 9
    • 68849125810 scopus 로고    scopus 로고
    • Relationship between human periodontitis and type 2 diabetes at a genomic level: A data-mining study
    • Covani U, Marconcini S, Derchi G, Barone A, Giacomelli L. Relationship between human periodontitis and type 2 diabetes at a genomic level: a data-mining study. J Periodontol. 2009;80(8):1265-73.
    • (2009) J Periodontol , vol.80 , Issue.8 , pp. 1265-1273
    • Covani, U.1    Marconcini, S.2    Derchi, G.3    Barone, A.4    Giacomelli, L.5
  • 10
    • 5444261878 scopus 로고    scopus 로고
    • A preprocessing method for improving data mining techniques. Application to a large medical diabetes database
    • Duhamel A, Nuttens MC, Devos P, Picavet M, Beuscart R. A preprocessing method for improving data mining techniques. Application to a large medical diabetes database. Stud Health Technol Inform. 2003;95:269-74.
    • (2003) Stud Health Technol Inform , vol.95 , pp. 269-274
    • Duhamel, A.1    Nuttens, M.C.2    Devos, P.3    Picavet, M.4    Beuscart, R.5
  • 11
    • 39749185888 scopus 로고    scopus 로고
    • Antipsychotics, glycemic disorders, and life-threatening diabetic events: A bayesian data-mining analysis of the FDA adverse event reporting system (1968-2004)
    • DOI 10.1080/10401230701844612, PII 790837014
    • DuMouchel W, Fram D, Yang X, Mahmoud RA, Grogg AL, Engelhart L, Ramaswamy K. Antipsychotics, glycemic disorders, and life-threatening diabetic events: a Bayesian data-mining analysis of the FDA adverse event reporting system (1968-2004). Ann Clin Psychiatry. 2008;20(1):21-31. (Pubitemid 351302397)
    • (2008) Annals of Clinical Psychiatry , vol.20 , Issue.1 , pp. 21-31
    • Dumouchel, W.1    Fram, D.2    Yang, X.3    Mahmoud, R.A.4    Grogg, A.L.5    Engelhart, L.6    Ramaswamy, K.7
  • 12
    • 33644669952 scopus 로고    scopus 로고
    • New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes
    • DOI 10.1074/mcp.M500197-MCP200
    • Gerling IC, Singh S, Lenchik NI, Marshall DR, Wu J. New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes. Mol Cell Proteomics. 2006;5(2):293-305. (Pubitemid 43329307)
    • (2006) Molecular and Cellular Proteomics , vol.5 , Issue.2 , pp. 293-305
    • Gerling, I.C.1    Singh, S.2    Lenchik, N.I.3    Marshall, D.R.4    Wu, J.5
  • 13
    • 35548975678 scopus 로고    scopus 로고
    • Feature selection and classification model construction on type 2 diabetic patients' data
    • DOI 10.1016/j.artmed.2007.07.002, PII S0933365707000851
    • Huang Y, McCullagh P, Black N, Harper R. Feature selection and classification model construction on type 2 diabetic patients' data. Artif Intell Med. 2007;41(3):251-62. (Pubitemid 350018987)
    • (2007) Artificial Intelligence in Medicine , vol.41 , Issue.3 , pp. 251-262
    • Huang, Y.1    McCullagh, P.2    Black, N.3    Harper, R.4
  • 14
    • 58149196988 scopus 로고    scopus 로고
    • Detecting hospital fraud and claim abuse through diabetic outpatient services
    • Liou FM, Tang YC, Chen JY. Detecting hospital fraud and claim abuse through diabetic outpatient services. Health Care Manag Sci. 2008;11(4):353-8.
    • (2008) Health Care Manag Sci , vol.11 , Issue.4 , pp. 353-358
    • Liou, F.M.1    Tang, Y.C.2    Chen, J.Y.3
  • 15
    • 0036559582 scopus 로고    scopus 로고
    • Novel statistical classification model of type 2 diabetes mellitus patients for tailor-made prevention using data mining algorithm
    • Miyaki K, Takei I, Watanabe K, Nakashima H, Omae K. Novel statistical classification model of type 2 diabetes mellitus patients for tailor-made prevention using data mining algorithm. J Epidemiol. 2002;12(3):243-8. (Pubitemid 44235008)
    • (2002) Journal of Epidemiology , vol.12 , Issue.3 , pp. 243-248
    • Miyaki, K.1    Takei, I.2    Watanabe, K.3    Nakashima, H.4    Watanabe, K.5    Omae, K.6
  • 16
    • 0034997351 scopus 로고    scopus 로고
    • Data mining for indicators of early mortality in a database of clinical records
    • DOI 10.1016/S0933-3657(00)00110-X, PII S093336570000110X
    • Richards G, Rayward-Smith VJ, Sönksen PH, Carey S, Weng C. Data mining for indicators of early mortality in a database of clinical records. Artif Intell Med. 2001;22(3):215-31. (Pubitemid 32453315)
    • (2001) Artificial Intelligence in Medicine , vol.22 , Issue.3 , pp. 215-231
    • Richards, G.1    Rayward-Smith, V.J.2    Sonksen, P.H.3    Carey, S.4    Weng, C.5
  • 17
    • 34249932054 scopus 로고    scopus 로고
    • Outcomes of educational interventions in type 2 diabetes: WEKA data-mining analysis
    • DOI 10.1016/j.pec.2007.03.007, PII S0738399107001012
    • Sigurdardottir AK, Jonsdottir H, Benediktsson R. Outcomes of educational interventions in type 2 diabetes: WEKA data-mining analysis. Patient Educ Couns. 2007;67(1-2):21-31. (Pubitemid 46880129)
    • (2007) Patient Education and Counseling , vol.67 , Issue.1-2 , pp. 21-31
    • Sigurdardottir, A.K.1    Jonsdottir, H.2    Benediktsson, R.3
  • 18
    • 67651162322 scopus 로고    scopus 로고
    • Using data mining techniques to explore physicians' therapeutic decisions when clinical guidelines do not provide recommendations: Methods and example for type 2 diabetes
    • Toussi M, Lamy JB, Le Toumelin P, Venot A. Using data mining techniques to explore physicians' therapeutic decisions when clinical guidelines do not provide recommendations: methods and example for type 2 diabetes. BMC Med Inform Decis Mak. 2009;9:28.
    • (2009) BMC Med Inform Decis Mak , vol.9 , pp. 28
    • Toussi, M.1    Lamy, J.B.2    Le Toumelin, P.3    Venot, A.4
  • 19
    • 37849053895 scopus 로고    scopus 로고
    • Application of information-theoretic data mining techniques in a national ambulatory practice outcomes research network
    • Wright A, Ricciardi TN, Zwick M. Application of information-theoretic data mining techniques in a national ambulatory practice outcomes research network. AMIA Annu Symp Proc; 2005;829-33.
    • (2005) AMIA Annu Symp Proc , pp. 829-833
    • Wright, A.1    Ricciardi, T.N.2    Zwick, M.3
  • 20
    • 33746887359 scopus 로고    scopus 로고
    • Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining
    • DOI 10.1007/s11517-006-0049-x
    • Yamaguchi M, Kaseda C, Yamazaki K, Kobayashi M. Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining. Med Biol Eng Comput. 2006;44(6):451-7. (Pubitemid 44184473)
    • (2006) Medical and Biological Engineering and Computing , vol.44 , Issue.6 , pp. 451-457
    • Yamaguchi, M.1    Kaseda, C.2    Yamazaki, K.3    Kobayashi, M.4
  • 21
    • 0012977426 scopus 로고    scopus 로고
    • Nonlinear Modeling Technique Using Historical Data for Case TCBM: Topological Case Based Modeling
    • Tsutsui H, Kurosaki A, Sato T. Nonlinear Modeling Technique Using Historical Data for Case TCBM: Topological Case Based Modeling. Transactions-Society of Instrument and Control Engineers. 1997;33(9):947-54.
    • (1997) Transactions-Society of Instrument and Control Engineers , vol.33 , Issue.9 , pp. 947-954
    • Tsutsui, H.1    Kurosaki, A.2    Sato, T.3
  • 22
    • 1242338880 scopus 로고    scopus 로고
    • ExQuest, a novel method for displaying quantitative gene expression from ESTs
    • DOI 10.1016/j.ygeno.2003.09.012
    • Brown AC, Kai K, May ME, Brown DC, Roopenian DC. ExQuest, a novel method for displaying quantitative gene expression from ESTs. Genomics. 2004;83(3):528-39. (Pubitemid 38220858)
    • (2004) Genomics , vol.83 , Issue.3 , pp. 528-539
    • Brown, A.C.1    Kai, K.2    May, M.E.3    Brown, D.C.4    Roopenian, D.C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.