메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2980-2986

A hybrid wind speed forecasting strategy based on Hilbert-Huang transform and machine learning algorithms

Author keywords

forecasting; Hilbert Huang transform; machine learning; power systems; wind power

Indexed keywords

DECISION TREES; FORECASTING; FORESTRY; LEARNING SYSTEMS; MATHEMATICAL TRANSFORMATIONS; OFFSHORE OIL WELL PRODUCTION; STANDBY POWER SYSTEMS; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION; TIME SERIES ANALYSIS; WIND; WIND POWER;

EID: 84924364709     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/POWERCON.2014.6993990     Document Type: Conference Paper
Times cited : (5)

References (26)
  • 1
    • 84873888032 scopus 로고    scopus 로고
    • How much wind energy will be curtailed on the 2020 irish powersystem
    • E. V. Mc Garrigle, J. P. Deane, and P. G. Leahy,"How much wind energy will be curtailed on the 2020 Irish powersystem ", Renewable Energy, no. 55, pp. 544-553, 2013.
    • (2013) Renewable Energy , Issue.55 , pp. 544-553
    • Mc Garrigle, E.V.1    Deane, J.P.2    Leahy, P.G.3
  • 3
    • 79959928609 scopus 로고    scopus 로고
    • Comparison of linear, Kalman filter and neural network downscaling of wind speeds from numerical weather prediction
    • C. Sibuet Watters, and P. Leahy, Rome, Italia
    • Watters C. S. Comparison of linear, Kalman filter and neural network downscaling of wind speeds from numerical weather prediction / C. Sibuet Watters, and P. Leahy, // Proc. 2011 10th International Conference on Environment and Electrical Engineering, Rome, Italia, 2009
    • (2009) Proc. 2011 10th International Conference on Environment and Electrical Engineering
    • Watters, C.S.1
  • 6
    • 60149087287 scopus 로고    scopus 로고
    • Estimating the spinning reserve requirements in systems with significant wind power generation penetration
    • M. A. Ortega-Vazquez and D. S. Kirschen,"Estimating the spinning reserve requirements in systems with significant wind power generation penetration," IEEE Transactions on Power Systems, 24 vol. 1, pp. 114-124, 2009.
    • (2009) IEEE Transactions on Power Systems , vol.24 , Issue.1 , pp. 114-124
    • Ortega-Vazquez, M.A.1    Kirschen, D.S.2
  • 7
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and powergeneration in wind parks using spatial correlation
    • I. G. Damousis, M. C. Alexiadis, J. B. Theocharis, P. S. Dokopoulos,"A fuzzy model for wind speed prediction and powergeneration in wind parks using spatial correlation," IEEE Transactionson Energy Conversion, vol. 19, no. 2, pp. 352-361, 2004.
    • (2004) IEEE Transactionson Energy Conversion , vol.19 , Issue.2 , pp. 352-361
    • Damousis, I.G.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 8
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • A. A. Sfetsos,"A novel approach for the forecasting of mean hourly wind speed time series,"Renewable Energy, vol. 27, no. 2, pp. 163-174, 2002.
    • (2002) Renewable Energy , vol.27 , Issue.2 , pp. 163-174
    • Sfetsos, A.A.1
  • 9
    • 0025841187 scopus 로고
    • Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica
    • A. R. Daniel andA. A. Chen,"Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica,"Solar Energy, vol. 46, no. 1, pp. 1-11, 1991.
    • (1991) Solar Energy , vol.46 , Issue.1 , pp. 1-11
    • Daniel, A.R.1    Chen, A.A.2
  • 12
    • 85050086998 scopus 로고    scopus 로고
    • Assessing the state of wind energy in wholesale electricitymarkets: Comments of Basin Electric Power Co-operative
    • U. S. Federal Energy Regulatory Commission (FERC)
    • U. S. Federal Energy Regulatory Commission (FERC). Assessing the state of wind energy in wholesale electricitymarkets: Comments of Basin Electric Power Co-operative, FERC Docket No. AD04-13-000, 2005.
    • (2005) FERC Docket No. AD04-13-000
  • 13
    • 84872520585 scopus 로고    scopus 로고
    • Ensemble learning for wind profile prediction with missing values
    • Feb.
    • H. He, Yu. Cao, Y. Cao, J. Wen, "Ensemble learning for wind profile prediction with missing values," Neural Comput & Applic., Feb. 2011, DOI 10. 1007/s00521-011-0708-1
    • (2011) Neural Comput & Applic.
    • He, H.1    Cao Yu.2    Cao, Y.3    Wen, J.4
  • 14
    • 79951982954 scopus 로고    scopus 로고
    • Multiple imputation by chained equations: What is it and how does it work
    • Mar.
    • M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, "Multiple Imputation by Chained Equations: What is it and how does it work ",Int. J Methods Psychiatr Res., vol. 20, no. 1,pp. 40-49, Mar. 2011 doi:10. 1002/mpr. 329.
    • (2011) Int. J Methods Psychiatr Res , vol.20 , Issue.1 , pp. 40-49
    • Azur, M.J.1    Stuart, E.A.2    Frangakis, C.3    Leaf, P.J.4
  • 16
    • 84856270792 scopus 로고    scopus 로고
    • Multiple imputation by chained equations (MICE): Implementation in Statistics
    • R. Royston and I. R. White,"Multiple imputation by chained equations (MICE): implementation in Statistics. Journal of Statistical Software, vol. 45, no. 4, pp. 1-20, 2011.
    • (2011) Journal of Statistical Software , vol.45 , Issue.4 , pp. 1-20
    • Royston, R.1    White, I.R.2
  • 17
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • D. Van Buuren, H. C. Boshuizen, D. L. Knook,"Multiple imputation of missing blood pressure covariates in survival analysis,"Statistics in Medicine, vol. 18, p. 681-694, 1999.
    • (1999) Statistics in Medicine , vol.18 , pp. 681-694
    • Van Buuren, D.1    Boshuizen, H.C.2    Knook, D.L.3
  • 18
    • 84925256963 scopus 로고    scopus 로고
    • Multiple imputation using chained equations for missing data in TIMSS: A case study
    • D. S. Bouhlila and F. Sellaouti, "Multiple imputation using chained equations for missing data in TIMSS: A case study,"Large-scale Assessments in Education 2013, vol. 1, no. 4, 2013. Available:http://www. largescaleassessmentsineducation. com/content/1/1 /4
    • (2013) Large-scale Assessments in Education , vol.1 , Issue.4
    • Bouhlila, D.S.1    Sellaouti, F.2
  • 19
    • 84901256343 scopus 로고    scopus 로고
    • Forecastingnonstationary time series based on hilbert-huang transform and machinelearning
    • V. G. Kurbatsky, D. N. Sidorov, V. A. Spiryaev, and N. V. Tomin, "ForecastingNonstationary Time Series Based on Hilbert-Huang Transform and MachineLearning,"Automation and Remote Control, vol. 75, no. 5, pp. 922-934, 2014.
    • (2014) Automation and Remote Control , vol.75 , Issue.5 , pp. 922-934
    • Kurbatsky, V.G.1    Sidorov, D.N.2    Spiryaev, V.A.3    Tomin, N.V.4
  • 21
    • 84903773919 scopus 로고    scopus 로고
    • Integral dynamical models: Singularities, signals and control
    • Edt. L. O. Chua Vol. 87, Singapore: World Scientific Press
    • D. Sidorov, Integral Dynamical Models: Singularities, Signals and Control. World Scientific Series on Nonlinear Sciences Series A, Edt. L. O. Chua, Vol. 87, Singapore: World Scientific Press, p. 300, 2013.
    • (2013) World Scientific Series on Nonlinear Sciences Series A , pp. 300
    • Sidorov, D.1
  • 22
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Wu Z., Huang N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method //Advances in adaptive data analysis.-2009.-Vol. 1.-N. 1.-Pp. 1-41.
    • Advances in Adaptive Data analysis.-2009 , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 23
    • 84898857912 scopus 로고    scopus 로고
    • Understanding variable importances in forests of randomized trees
    • G. Louppe et al. Understanding variable importances in forests of randomized trees// Advances in Neural Information Processing Systems.-2013.-Pp. 431-439.
    • (2013) Advances in Neural Information Processing Systems , pp. 431-439
    • Louppe, G.1
  • 25
    • 84925256962 scopus 로고    scopus 로고
    • Feature Selection and Variable Screening Introductory Overview. STATICTICA Help
    • Feature Selection and Variable Screening Introductory Overview. STATICTICA Help Available:http://documentation. statsoft. com/STATISTICAHelp. aspx pa th=Gxx/FeatureSelectionandVariableScreening/Overviews/FeatureSelec tionandVariableScreeningOverview


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.