-
1
-
-
84873888032
-
How much wind energy will be curtailed on the 2020 irish powersystem
-
E. V. Mc Garrigle, J. P. Deane, and P. G. Leahy,"How much wind energy will be curtailed on the 2020 Irish powersystem ", Renewable Energy, no. 55, pp. 544-553, 2013.
-
(2013)
Renewable Energy
, Issue.55
, pp. 544-553
-
-
Mc Garrigle, E.V.1
Deane, J.P.2
Leahy, P.G.3
-
2
-
-
79959928609
-
Comparison of linear, Kalman filter and neural network downscalingof wind speeds from numerical weather prediction
-
Rome, Italy
-
C. S. Watters, C. Sibuet, and P. Leahy,"Comparison of linear, Kalman filter and neural network downscalingof wind speeds from numerical weather prediction", in Proc. 2011 10th International Conference on Environment and Electrical Engineering, Rome, Italy, pp. 1-4, 2009.
-
(2009)
Proc. 2011 10th International Conference on Environment and Electrical Engineering
, pp. 1-4
-
-
Watters, C.S.1
Sibuet, C.2
Leahy, P.3
-
3
-
-
79959928609
-
Comparison of linear, Kalman filter and neural network downscaling of wind speeds from numerical weather prediction
-
C. Sibuet Watters, and P. Leahy, Rome, Italia
-
Watters C. S. Comparison of linear, Kalman filter and neural network downscaling of wind speeds from numerical weather prediction / C. Sibuet Watters, and P. Leahy, // Proc. 2011 10th International Conference on Environment and Electrical Engineering, Rome, Italia, 2009
-
(2009)
Proc. 2011 10th International Conference on Environment and Electrical Engineering
-
-
Watters, C.S.1
-
4
-
-
76549106923
-
Machine learning applications for load, price and wind power prediction in power systems
-
M. Negnevitsky, P. Mandal, A. K. Srivastava. "Machine Learning Applications for Load, Price and Wind Power Prediction in Power Systems", in proc. of: 15th International Conference on Intelligent System Applications to Power Systems, 2009. ISAP '09.
-
Proc. Of: 15th International Conference on Intelligent System Applications to Power Systems, 2009. ISAP '09
-
-
Negnevitsky, M.1
Mandal, P.2
Srivastava, A.K.3
-
5
-
-
0442296729
-
Support vector machines for wind speed prediction
-
Mohandes, M. A., Halawani, T. O., Rehman, S., & Hussain, A. A. Support vector machines for wind speed prediction. Renewable Energy, 2004, 29(6), 939-947.
-
(2004)
Renewable Energy
, vol.29
, Issue.6
, pp. 939-947
-
-
Mohandes, M.A.1
Halawani, T.O.2
Rehman, S.3
Hussain, A.A.4
-
6
-
-
60149087287
-
Estimating the spinning reserve requirements in systems with significant wind power generation penetration
-
M. A. Ortega-Vazquez and D. S. Kirschen,"Estimating the spinning reserve requirements in systems with significant wind power generation penetration," IEEE Transactions on Power Systems, 24 vol. 1, pp. 114-124, 2009.
-
(2009)
IEEE Transactions on Power Systems
, vol.24
, Issue.1
, pp. 114-124
-
-
Ortega-Vazquez, M.A.1
Kirschen, D.S.2
-
7
-
-
2942570109
-
A fuzzy model for wind speed prediction and powergeneration in wind parks using spatial correlation
-
I. G. Damousis, M. C. Alexiadis, J. B. Theocharis, P. S. Dokopoulos,"A fuzzy model for wind speed prediction and powergeneration in wind parks using spatial correlation," IEEE Transactionson Energy Conversion, vol. 19, no. 2, pp. 352-361, 2004.
-
(2004)
IEEE Transactionson Energy Conversion
, vol.19
, Issue.2
, pp. 352-361
-
-
Damousis, I.G.1
Alexiadis, M.C.2
Theocharis, J.B.3
Dokopoulos, P.S.4
-
8
-
-
0036779031
-
A novel approach for the forecasting of mean hourly wind speed time series
-
A. A. Sfetsos,"A novel approach for the forecasting of mean hourly wind speed time series,"Renewable Energy, vol. 27, no. 2, pp. 163-174, 2002.
-
(2002)
Renewable Energy
, vol.27
, Issue.2
, pp. 163-174
-
-
Sfetsos, A.A.1
-
9
-
-
0025841187
-
Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica
-
A. R. Daniel andA. A. Chen,"Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica,"Solar Energy, vol. 46, no. 1, pp. 1-11, 1991.
-
(1991)
Solar Energy
, vol.46
, Issue.1
, pp. 1-11
-
-
Daniel, A.R.1
Chen, A.A.2
-
10
-
-
21844461695
-
The state of the art in short-term prediction of windpower-from an offshore perspective
-
G. Kariniotakis, P. Pinson, N. Siebert, G. Giebel, R. Barthelmie,"The state of the art in short-term prediction of windpower-from an offshore perspective," In Proc. of Sea Tech Week 2004,pp. 1-13.
-
(2004)
Proc. of Sea Tech Week
, pp. 1-13
-
-
Kariniotakis, G.1
Pinson, P.2
Siebert, N.3
Giebel, G.4
Barthelmie, R.5
-
11
-
-
43049128559
-
A review on theyoung history of wind power short-term prediction
-
A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen, E. A. Feitona, "A review on theyoung history of wind power short-term prediction,"Renewable and Sustainable Energy Reviews, vol. 12, no. 6, pp. 1725-1744, 1998.
-
(1998)
Renewable and Sustainable Energy Reviews
, vol.12
, Issue.6
, pp. 1725-1744
-
-
Costa, A.1
Crespo, A.2
Navarro, J.3
Lizcano, G.4
Madsen, H.5
Feitona, E.A.6
-
12
-
-
85050086998
-
Assessing the state of wind energy in wholesale electricitymarkets: Comments of Basin Electric Power Co-operative
-
U. S. Federal Energy Regulatory Commission (FERC)
-
U. S. Federal Energy Regulatory Commission (FERC). Assessing the state of wind energy in wholesale electricitymarkets: Comments of Basin Electric Power Co-operative, FERC Docket No. AD04-13-000, 2005.
-
(2005)
FERC Docket No. AD04-13-000
-
-
-
13
-
-
84872520585
-
Ensemble learning for wind profile prediction with missing values
-
Feb.
-
H. He, Yu. Cao, Y. Cao, J. Wen, "Ensemble learning for wind profile prediction with missing values," Neural Comput & Applic., Feb. 2011, DOI 10. 1007/s00521-011-0708-1
-
(2011)
Neural Comput & Applic.
-
-
He, H.1
Cao Yu.2
Cao, Y.3
Wen, J.4
-
14
-
-
79951982954
-
Multiple imputation by chained equations: What is it and how does it work
-
Mar.
-
M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, "Multiple Imputation by Chained Equations: What is it and how does it work ",Int. J Methods Psychiatr Res., vol. 20, no. 1,pp. 40-49, Mar. 2011 doi:10. 1002/mpr. 329.
-
(2011)
Int. J Methods Psychiatr Res
, vol.20
, Issue.1
, pp. 40-49
-
-
Azur, M.J.1
Stuart, E.A.2
Frangakis, C.3
Leaf, P.J.4
-
16
-
-
84856270792
-
Multiple imputation by chained equations (MICE): Implementation in Statistics
-
R. Royston and I. R. White,"Multiple imputation by chained equations (MICE): implementation in Statistics. Journal of Statistical Software, vol. 45, no. 4, pp. 1-20, 2011.
-
(2011)
Journal of Statistical Software
, vol.45
, Issue.4
, pp. 1-20
-
-
Royston, R.1
White, I.R.2
-
17
-
-
0033616909
-
Multiple imputation of missing blood pressure covariates in survival analysis
-
D. Van Buuren, H. C. Boshuizen, D. L. Knook,"Multiple imputation of missing blood pressure covariates in survival analysis,"Statistics in Medicine, vol. 18, p. 681-694, 1999.
-
(1999)
Statistics in Medicine
, vol.18
, pp. 681-694
-
-
Van Buuren, D.1
Boshuizen, H.C.2
Knook, D.L.3
-
18
-
-
84925256963
-
Multiple imputation using chained equations for missing data in TIMSS: A case study
-
D. S. Bouhlila and F. Sellaouti, "Multiple imputation using chained equations for missing data in TIMSS: A case study,"Large-scale Assessments in Education 2013, vol. 1, no. 4, 2013. Available:http://www. largescaleassessmentsineducation. com/content/1/1 /4
-
(2013)
Large-scale Assessments in Education
, vol.1
, Issue.4
-
-
Bouhlila, D.S.1
Sellaouti, F.2
-
19
-
-
84901256343
-
Forecastingnonstationary time series based on hilbert-huang transform and machinelearning
-
V. G. Kurbatsky, D. N. Sidorov, V. A. Spiryaev, and N. V. Tomin, "ForecastingNonstationary Time Series Based on Hilbert-Huang Transform and MachineLearning,"Automation and Remote Control, vol. 75, no. 5, pp. 922-934, 2014.
-
(2014)
Automation and Remote Control
, vol.75
, Issue.5
, pp. 922-934
-
-
Kurbatsky, V.G.1
Sidorov, D.N.2
Spiryaev, V.A.3
Tomin, N.V.4
-
20
-
-
84924364711
-
-
arXiv preprint in Learning (cs. LG); Machine Learning(stat. ML),arXiv:1404. 2353v1
-
V. Kurbatsky, N. Tomin, P. Leahy, D. Sidorov, V. Spiryaev, and A. Zhukov, "Power System Parameters Forecasting Using Hilbert-Huang Transformand Machine Learning,"arXiv preprint in Learning (cs. LG); Machine Learning(stat. ML),arXiv:1404. 2353v1, 2014.
-
(2014)
Power System Parameters Forecasting Using Hilbert-huang Transformand Machine Learning
-
-
Kurbatsky, V.1
Tomin, N.2
Leahy, P.3
Sidorov, D.4
Spiryaev, V.5
Zhukov, A.6
-
21
-
-
84903773919
-
Integral dynamical models: Singularities, signals and control
-
Edt. L. O. Chua Vol. 87, Singapore: World Scientific Press
-
D. Sidorov, Integral Dynamical Models: Singularities, Signals and Control. World Scientific Series on Nonlinear Sciences Series A, Edt. L. O. Chua, Vol. 87, Singapore: World Scientific Press, p. 300, 2013.
-
(2013)
World Scientific Series on Nonlinear Sciences Series A
, pp. 300
-
-
Sidorov, D.1
-
22
-
-
80052078099
-
Ensemble empirical mode decomposition: A noise-assisted data analysis method
-
Wu Z., Huang N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method //Advances in adaptive data analysis.-2009.-Vol. 1.-N. 1.-Pp. 1-41.
-
Advances in Adaptive Data analysis.-2009
, vol.1
, Issue.1
, pp. 1-41
-
-
Wu, Z.1
Huang, N.E.2
-
23
-
-
84898857912
-
Understanding variable importances in forests of randomized trees
-
G. Louppe et al. Understanding variable importances in forests of randomized trees// Advances in Neural Information Processing Systems.-2013.-Pp. 431-439.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 431-439
-
-
Louppe, G.1
-
25
-
-
84925256962
-
-
Feature Selection and Variable Screening Introductory Overview. STATICTICA Help
-
Feature Selection and Variable Screening Introductory Overview. STATICTICA Help Available:http://documentation. statsoft. com/STATISTICAHelp. aspx pa th=Gxx/FeatureSelectionandVariableScreening/Overviews/FeatureSelec tionandVariableScreeningOverview
-
-
-
|