-
1
-
-
43449100377
-
Diagnostics for multivariate imputations
-
Abayomi K, Gelman A, Levy M: Diagnostics for multivariate imputations. Applied Statistics 2008,57(Series C, Part 3):273–291.
-
(2008)
Applied Statistics
, vol.57
, pp. 273-291
-
-
Abayomi, K.1
Gelman, A.2
Levy, M.3
-
2
-
-
33645723230
-
Working with missing data
-
Acock AC: Working with missing data. Journal of Marriage and Family 2005,67(4):1012–1028. 10.1111/j.1741-3737.2005.00191.x
-
(2005)
Journal of Marriage and Family
, vol.67
, Issue.4
, pp. 1012-1028
-
-
Acock, A.C.1
-
3
-
-
0034339545
-
Multiple imputation for missing data: a cautionary tale
-
Allison PD: Multiple imputation for missing data: a cautionary tale. Sociological Methods and Research 2000, 28: 301–309. 10.1177/0049124100028003003
-
(2000)
Sociological Methods and Research
, vol.28
, pp. 301-309
-
-
Allison, P.D.1
-
5
-
-
54049109688
-
What improves with increased missing data imputations?
-
Bodner TE: What improves with increased missing data imputations? Structural Equation Modeling 2008, 15: 651–675. 10.1080/10705510802339072
-
(2008)
Structural Equation Modeling
, vol.15
, pp. 651-675
-
-
Bodner, T.E.1
-
7
-
-
0003993843
-
-
US Government Printing Office, Washington, DC
-
Coleman JS, Campbell E, Hobson C, McPartland J, Mood A, Weinfield F, York R: Equality of educational opportunity. Washington, DC: US Government Printing Office; 1966.
-
(1966)
Equality of educational opportunity
-
-
Coleman, J.S.1
Campbell, E.2
Hobson, C.3
McPartland, J.4
Mood, A.5
Weinfield, F.6
York, R.7
-
8
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins LM, Schafer JL, Kam CM: A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 2001,6(4):330–351.
-
(2001)
Psychological Methods
, vol.6
, Issue.4
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.M.3
-
10
-
-
33645870431
-
Modern alternatives for dealing with missing data in special education research
-
Enders C, Dietz S, Montague M, Dixon J: Modern alternatives for dealing with missing data in special education research. Advances in Learning and Behavioral Disabilities 2006, 19: 105–133.
-
(2006)
Advances in Learning and Behavioral Disabilities
, vol.19
, pp. 105-133
-
-
Enders, C.1
Dietz, S.2
Montague, M.3
Dixon, J.4
-
12
-
-
60549085055
-
Missing data analysis: making it work in the real world
-
Graham JW: Missing data analysis: making it work in the real world. Annual Review of Psychology 2009, 60: 549–576. 10.1146/annurev.psych.58.110405.085530
-
(2009)
Annual Review of Psychology
, vol.60
, pp. 549-576
-
-
Graham, J.W.1
-
13
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
Graham JW, Olchowski AE, Gilreath TD: How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 2007, 8: 206–213. 10.1007/s11121-007-0070-9
-
(2007)
Prevention Science
, vol.8
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
14
-
-
33846873244
-
Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models
-
Horton NJ, Kleinman KP: Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models. The American Statistician 2007,61(1):79–90. 10.1198/000313007X172556
-
(2007)
The American Statistician
, vol.61
, Issue.1
, pp. 79-90
-
-
Horton, N.J.1
Kleinman, K.P.2
-
15
-
-
84939189372
-
-
IDRE, University of California at Los Angeles, Los Angeles, CA: Retrieved from http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
-
Institute for Digital Research and Education (IDRE): Statistical computing seminars: multiple imputation in Stata, part 1. Los Angeles, CA: IDRE, University of California at Los Angeles; 2013a. Retrieved from http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
-
(2013)
Statistical computing seminars: multiple imputation in Stata, part 1
-
-
-
16
-
-
84939189372
-
-
IDRE, University of California at Los Angeles, Los Angeles, CA: Retrieved from http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
-
Institute for Digital Research and Education (IDRE): Statistical computing seminars: multiple imputation in Stata, part 2. Los Angeles, CA: IDRE, University of California at Los Angeles; 2013b. Retrieved from http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
-
(2013)
Statistical computing seminars: multiple imputation in Stata, part 2
-
-
-
18
-
-
77249147857
-
Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation
-
Lee KJ, Carlin JB: Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology 2010,171(5):624–632. 10.1093/aje/kwp425
-
(2010)
American Journal of Epidemiology
, vol.171
, Issue.5
, pp. 624-632
-
-
Lee, K.J.1
Carlin, J.B.2
-
19
-
-
84936853890
-
A test of missing completely at random for multivariate data with missing values
-
Little RJA: A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association 1988,83(404):1198–1202. 10.1080/01621459.1988.10478722
-
(1988)
Journal of the American Statistical Association
, vol.83
, Issue.404
, pp. 1198-1202
-
-
Little, R.J.A.1
-
22
-
-
84956630156
-
-
Paper presented at the 2011 Italian Stata Users Group Meeting. Retrieved from http://www.stata.com/meeting/italy11/abstracts/italy11_marchenko.pdf
-
Marchenko YV: Chained equations and more in multiple imputation in Stata. 2011. Paper presented at the 2011 Italian Stata Users Group Meeting. Retrieved from http://www.stata.com/meeting/italy11/abstracts/italy11_marchenko.pdf
-
(2011)
Chained equations and more in multiple imputation in Stata
-
-
Marchenko, Y.V.1
-
24
-
-
84878015593
-
Software for the handling and imputation of missing data: an overview
-
Mayer B, Muche R, Hohl K: Software for the handling and imputation of missing data: an overview. Clinical Trials 2012,2(1):1–8. Available online at http://www.omicsgroup.org/journals/JCTR/JCTR-2–103.php?aid=3766
-
(2012)
Clinical Trials
, vol.2
, Issue.1
, pp. 1-8
-
-
Mayer, B.1
Muche, R.2
Hohl, K.3
-
25
-
-
84972537494
-
Multiple imputation inferences with uncongenial sources of input
-
Meng XL: Multiple imputation inferences with uncongenial sources of input. Statistical Science 1994,9(4):538–558.
-
(1994)
Statistical Science
, vol.9
, Issue.4
, pp. 538-558
-
-
Meng, X.L.1
-
26
-
-
33748709502
-
Using the outcome for imputation of missing predictor values was preferred
-
Moons KG, Donders RA, Stijnen T, Harrell FE Jr: Using the outcome for imputation of missing predictor values was preferred. Journal of Clinical Epidemiology 2006, 59: 1092–1101. 10.1016/j.jclinepi.2006.01.009
-
(2006)
Journal of Clinical Epidemiology
, vol.59
, pp. 1092-1101
-
-
Moons, K.G.1
Donders, R.A.2
Stijnen, T.3
Harrell, F.E.4
-
27
-
-
0001441322
-
Random group effects and the precision of regression estimates
-
Moulton BR: Random group effects and the precision of regression estimates. Journal of Econometrics 1986,32(3):385–397. 10.1016/0304-4076(86)90021-7
-
(1986)
Journal of Econometrics
, vol.32
, Issue.3
, pp. 385-397
-
-
Moulton, B.R.1
-
28
-
-
0345659236
-
Proper and improper multiple imputation
-
Nielsen SF: Proper and improper multiple imputation. International Statistical Review 2003,71(3):593–607.
-
(2003)
International Statistical Review
, vol.71
, Issue.3
, pp. 593-607
-
-
Nielsen, S.F.1
-
31
-
-
12744272198
-
Missing data in educational research: a review of reporting practices and suggestions for improvement
-
Peugh JL, Enders CK: Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research 2004,74(4):525–556. 10.3102/00346543074004525
-
(2004)
Review of Educational Research
, vol.74
, Issue.4
, pp. 525-556
-
-
Peugh, J.L.1
Enders, C.K.2
-
32
-
-
84856293889
-
-
Available on the Social Science Research Network website: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1031750
-
Raghunathan TE, Bondarenko I: Diagnostics for multiple imputations. 2007. Available on the Social Science Research Network website: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1031750
-
(2007)
Diagnostics for multiple imputations
-
-
Raghunathan, T.E.1
Bondarenko, I.2
-
33
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P: A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001, 27: 85–95.
-
(2001)
Survey Methodology
, vol.27
, pp. 85-95
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
Van Hoewyk, J.3
Solenberger, P.4
-
35
-
-
84856270792
-
Multiple imputation by chained equations (MICE): implementation in Stata
-
Royston P, White IR: Multiple imputation by chained equations (MICE): implementation in Stata. Journal of Statistical Software 2011,45(4):1–20.
-
(2011)
Journal of Statistical Software
, vol.45
, Issue.4
, pp. 1-20
-
-
Royston, P.1
White, I.R.2
-
36
-
-
0017133178
-
Inference and missing data
-
Rubin DB: Inference and missing data. Biometrika 1976, 63: 581–592. 10.1093/biomet/63.3.581
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
37
-
-
0001354633
-
Formalizing subjective notions about the effect of nonrespondents in sample surveys
-
Rubin DB: Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 1977, 72: 538–543. 10.1080/01621459.1977.10480610
-
(1977)
Journal of the American Statistical Association
, vol.72
, pp. 538-543
-
-
Rubin, D.B.1
-
41
-
-
77951601196
-
International large-scale assessment data: Issues in secondary analysis and reporting
-
Rutkowski L, Gonzalez E, Joncas M, Von Davier M: International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher 2010,39(2):142–151. 10.3102/0013189X10363170
-
(2010)
Educational Researcher
, vol.39
, Issue.2
, pp. 142-151
-
-
Rutkowski, L.1
Gonzalez, E.2
Joncas, M.3
Von Davier, M.4
-
46
-
-
28444485368
-
Multiple imputation in multivariate problems when the imputation and analysis models differ
-
Schafer JL: Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica 2003,57(1):19–35. 10.1111/1467-9574.00218
-
(2003)
Statistica Neerlandica
, vol.57
, Issue.1
, pp. 19-35
-
-
Schafer, J.L.1
-
47
-
-
85047673373
-
Missing data: our view of the state of the art
-
Schafer JL, Graham JW: Missing data: our view of the state of the art. Psychological Methods 2002,7(2):147–177.
-
(2002)
Psychological Methods
, vol.7
, Issue.2
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
48
-
-
0032219074
-
Multiple imputation for multivariate missing data problems: a data analyst’s perspective
-
Schafer JL, Olsen MK: Multiple imputation for multivariate missing data problems: a data analyst’s perspective. Multivariate Behavioral Research 1998, 33: 545–571. 10.1207/s15327906mbr3304_5
-
(1998)
Multivariate Behavioral Research
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
49
-
-
79953276160
-
Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
-
Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. British Medical Journal 2009, 339: 157–160.
-
(2009)
British Medical Journal
, vol.339
, pp. 157-160
-
-
Sterne, J.A.C.1
White, I.R.2
Carlin, J.B.3
Spratt, M.4
Royston, P.5
Kenward, M.G.6
Wood, A.M.7
Carpenter, J.R.8
-
50
-
-
65249094801
-
Multiple imputation with large data sets: a case study of the children’s mental health initiative
-
Stuart EA, Azur M, Frangakis C, Leaf P: Multiple imputation with large data sets: a case study of the children’s mental health initiative. American Journal of Epidemiology 2009,169(9):1133–1139. 10.1093/aje/kwp026
-
(2009)
American Journal of Epidemiology
, vol.169
, Issue.9
, pp. 1133-1139
-
-
Stuart, E.A.1
Azur, M.2
Frangakis, C.3
Leaf, P.4
-
51
-
-
84863414529
-
Multiple imputation with diagnostics (mi) in R: opening windows into the black box
-
Su YS, Gelman A, Hill J, Yajima M: Multiple imputation with diagnostics (mi) in R: opening windows into the black box. Journal of Statistical Software 2011,45(2):1–13.
-
(2011)
Journal of Statistical Software
, vol.45
, Issue.2
, pp. 1-13
-
-
Su, Y.S.1
Gelman, A.2
Hill, J.3
Yajima, M.4
-
52
-
-
0037108314
-
Use of multiple imputation to correct for non-response bias in a survey of urologic symptoms among African-American men
-
Taylor JMG, Cooper KL, Wei JT, Sarma RV, Raghunathan TE, Heeringa SG: Use of multiple imputation to correct for non-response bias in a survey of urologic symptoms among African-American men. American Journal of Epidemiology 2002, 156: 774–782. 10.1093/aje/kwf110
-
(2002)
American Journal of Epidemiology
, vol.156
, pp. 774-782
-
-
Taylor, J.M.G.1
Cooper, K.L.2
Wei, J.T.3
Sarma, R.V.4
Raghunathan, T.E.5
Heeringa, S.G.6
-
53
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
Van Buuren S: Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 2007,16(3):219–242. 10.1177/0962280206074463
-
(2007)
Statistical Methods in Medical Research
, vol.16
, Issue.3
, pp. 219-242
-
-
Van Buuren, S.1
-
55
-
-
0033616909
-
Multiple imputation of missing blood pressure covariates in survival analysis
-
Van Buuren S, Boshuizen HC, Knook DL: Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999, 18: 681–694. 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
-
(1999)
Statistics in Medicine
, vol.18
, pp. 681-694
-
-
Van Buuren, S.1
Boshuizen, H.C.2
Knook, D.L.3
-
56
-
-
33751583679
-
Fully conditional specification in multivariate imputation
-
Van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB: Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation 2006, 76: 1049–1064. 10.1080/10629360600810434
-
(2006)
Journal of Statistical Computation and Simulation
, vol.76
, pp. 1049-1064
-
-
Van Buuren, S.1
Brand, J.P.L.2
Groothuis-Oudshoorn, C.G.M.3
Rubin, D.B.4
-
57
-
-
77955271783
-
Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables
-
White IR, Daniel R, Royston P: Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Computational Statistics and Data Analysis 2010, 54: 2267–2275. 10.1016/j.csda.2010.04.005
-
(2010)
Computational Statistics and Data Analysis
, vol.54
, pp. 2267-2275
-
-
White, I.R.1
Daniel, R.2
Royston, P.3
-
58
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White IR, Royston P, Wood AM: Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine 2011, 30: 377–399. 10.1002/sim.4067
-
(2011)
Statistics in Medicine
, vol.30
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
59
-
-
0345659235
-
Multiple imputation: theory and method
-
Zhang P: Multiple imputation: theory and method. International Statistical Review 2003,71(3):581–592.
-
(2003)
International Statistical Review
, vol.71
, Issue.3
, pp. 581-592
-
-
Zhang, P.1
|