메뉴 건너뛰기




Volumn 1, Issue 1, 2013, Pages

Multiple imputation using chained equations for missing data in TIMSS: a case study

Author keywords

Complete Case Analysis; Imputation Model; Impute Dataset; Multiple Imputation; Posterior Predictive Distribution

Indexed keywords


EID: 84925256963     PISSN: None     EISSN: 21960739     Source Type: Journal    
DOI: 10.1186/2196-0739-1-4     Document Type: Article
Times cited : (41)

References (59)
  • 1
    • 43449100377 scopus 로고    scopus 로고
    • Diagnostics for multivariate imputations
    • Abayomi K, Gelman A, Levy M: Diagnostics for multivariate imputations. Applied Statistics 2008,57(Series C, Part 3):273–291.
    • (2008) Applied Statistics , vol.57 , pp. 273-291
    • Abayomi, K.1    Gelman, A.2    Levy, M.3
  • 2
    • 33645723230 scopus 로고    scopus 로고
    • Working with missing data
    • Acock AC: Working with missing data. Journal of Marriage and Family 2005,67(4):1012–1028. 10.1111/j.1741-3737.2005.00191.x
    • (2005) Journal of Marriage and Family , vol.67 , Issue.4 , pp. 1012-1028
    • Acock, A.C.1
  • 3
    • 0034339545 scopus 로고    scopus 로고
    • Multiple imputation for missing data: a cautionary tale
    • Allison PD: Multiple imputation for missing data: a cautionary tale. Sociological Methods and Research 2000, 28: 301–309. 10.1177/0049124100028003003
    • (2000) Sociological Methods and Research , vol.28 , pp. 301-309
    • Allison, P.D.1
  • 5
    • 54049109688 scopus 로고    scopus 로고
    • What improves with increased missing data imputations?
    • Bodner TE: What improves with increased missing data imputations? Structural Equation Modeling 2008, 15: 651–675. 10.1080/10705510802339072
    • (2008) Structural Equation Modeling , vol.15 , pp. 651-675
    • Bodner, T.E.1
  • 8
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins LM, Schafer JL, Kam CM: A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 2001,6(4):330–351.
    • (2001) Psychological Methods , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 12
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: making it work in the real world
    • Graham JW: Missing data analysis: making it work in the real world. Annual Review of Psychology 2009, 60: 549–576. 10.1146/annurev.psych.58.110405.085530
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 13
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham JW, Olchowski AE, Gilreath TD: How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 2007, 8: 206–213. 10.1007/s11121-007-0070-9
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 14
    • 33846873244 scopus 로고    scopus 로고
    • Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models
    • Horton NJ, Kleinman KP: Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models. The American Statistician 2007,61(1):79–90. 10.1198/000313007X172556
    • (2007) The American Statistician , vol.61 , Issue.1 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 15
    • 84939189372 scopus 로고    scopus 로고
    • IDRE, University of California at Los Angeles, Los Angeles, CA: Retrieved from http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
    • Institute for Digital Research and Education (IDRE): Statistical computing seminars: multiple imputation in Stata, part 1. Los Angeles, CA: IDRE, University of California at Los Angeles; 2013a. Retrieved from http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
    • (2013) Statistical computing seminars: multiple imputation in Stata, part 1
  • 16
    • 84939189372 scopus 로고    scopus 로고
    • IDRE, University of California at Los Angeles, Los Angeles, CA: Retrieved from http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
    • Institute for Digital Research and Education (IDRE): Statistical computing seminars: multiple imputation in Stata, part 2. Los Angeles, CA: IDRE, University of California at Los Angeles; 2013b. Retrieved from http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
    • (2013) Statistical computing seminars: multiple imputation in Stata, part 2
  • 17
    • 84877268322 scopus 로고    scopus 로고
    • Combining the complete-data and nonresponse models for drawing imputations under MAR
    • Jolani S, Van Buuren S, Frank LE: Combining the complete-data and nonresponse models for drawing imputations under MAR. Journal of Statistical Computation and Simulation 2011, 1: 1–12. doi:10.1080/00949655.2011.639773
    • (2011) Journal of Statistical Computation and Simulation , vol.1 , pp. 1-12
    • Jolani, S.1    Van Buuren, S.2    Frank, L.E.3
  • 18
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation
    • Lee KJ, Carlin JB: Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology 2010,171(5):624–632. 10.1093/aje/kwp425
    • (2010) American Journal of Epidemiology , vol.171 , Issue.5 , pp. 624-632
    • Lee, K.J.1    Carlin, J.B.2
  • 19
    • 84936853890 scopus 로고
    • A test of missing completely at random for multivariate data with missing values
    • Little RJA: A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association 1988,83(404):1198–1202. 10.1080/01621459.1988.10478722
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.404 , pp. 1198-1202
    • Little, R.J.A.1
  • 22
    • 84956630156 scopus 로고    scopus 로고
    • Paper presented at the 2011 Italian Stata Users Group Meeting. Retrieved from http://www.stata.com/meeting/italy11/abstracts/italy11_marchenko.pdf
    • Marchenko YV: Chained equations and more in multiple imputation in Stata. 2011. Paper presented at the 2011 Italian Stata Users Group Meeting. Retrieved from http://www.stata.com/meeting/italy11/abstracts/italy11_marchenko.pdf
    • (2011) Chained equations and more in multiple imputation in Stata
    • Marchenko, Y.V.1
  • 24
    • 84878015593 scopus 로고    scopus 로고
    • Software for the handling and imputation of missing data: an overview
    • Mayer B, Muche R, Hohl K: Software for the handling and imputation of missing data: an overview. Clinical Trials 2012,2(1):1–8. Available online at http://www.omicsgroup.org/journals/JCTR/JCTR-2–103.php?aid=3766
    • (2012) Clinical Trials , vol.2 , Issue.1 , pp. 1-8
    • Mayer, B.1    Muche, R.2    Hohl, K.3
  • 25
    • 84972537494 scopus 로고
    • Multiple imputation inferences with uncongenial sources of input
    • Meng XL: Multiple imputation inferences with uncongenial sources of input. Statistical Science 1994,9(4):538–558.
    • (1994) Statistical Science , vol.9 , Issue.4 , pp. 538-558
    • Meng, X.L.1
  • 26
    • 33748709502 scopus 로고    scopus 로고
    • Using the outcome for imputation of missing predictor values was preferred
    • Moons KG, Donders RA, Stijnen T, Harrell FE Jr: Using the outcome for imputation of missing predictor values was preferred. Journal of Clinical Epidemiology 2006, 59: 1092–1101. 10.1016/j.jclinepi.2006.01.009
    • (2006) Journal of Clinical Epidemiology , vol.59 , pp. 1092-1101
    • Moons, K.G.1    Donders, R.A.2    Stijnen, T.3    Harrell, F.E.4
  • 27
    • 0001441322 scopus 로고
    • Random group effects and the precision of regression estimates
    • Moulton BR: Random group effects and the precision of regression estimates. Journal of Econometrics 1986,32(3):385–397. 10.1016/0304-4076(86)90021-7
    • (1986) Journal of Econometrics , vol.32 , Issue.3 , pp. 385-397
    • Moulton, B.R.1
  • 28
    • 0345659236 scopus 로고    scopus 로고
    • Proper and improper multiple imputation
    • Nielsen SF: Proper and improper multiple imputation. International Statistical Review 2003,71(3):593–607.
    • (2003) International Statistical Review , vol.71 , Issue.3 , pp. 593-607
    • Nielsen, S.F.1
  • 31
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: a review of reporting practices and suggestions for improvement
    • Peugh JL, Enders CK: Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research 2004,74(4):525–556. 10.3102/00346543074004525
    • (2004) Review of Educational Research , vol.74 , Issue.4 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 32
    • 84856293889 scopus 로고    scopus 로고
    • Available on the Social Science Research Network website: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1031750
    • Raghunathan TE, Bondarenko I: Diagnostics for multiple imputations. 2007. Available on the Social Science Research Network website: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1031750
    • (2007) Diagnostics for multiple imputations
    • Raghunathan, T.E.1    Bondarenko, I.2
  • 33
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P: A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001, 27: 85–95.
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van Hoewyk, J.3    Solenberger, P.4
  • 35
    • 84856270792 scopus 로고    scopus 로고
    • Multiple imputation by chained equations (MICE): implementation in Stata
    • Royston P, White IR: Multiple imputation by chained equations (MICE): implementation in Stata. Journal of Statistical Software 2011,45(4):1–20.
    • (2011) Journal of Statistical Software , vol.45 , Issue.4 , pp. 1-20
    • Royston, P.1    White, I.R.2
  • 36
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB: Inference and missing data. Biometrika 1976, 63: 581–592. 10.1093/biomet/63.3.581
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 37
    • 0001354633 scopus 로고
    • Formalizing subjective notions about the effect of nonrespondents in sample surveys
    • Rubin DB: Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 1977, 72: 538–543. 10.1080/01621459.1977.10480610
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 538-543
    • Rubin, D.B.1
  • 41
    • 77951601196 scopus 로고    scopus 로고
    • International large-scale assessment data: Issues in secondary analysis and reporting
    • Rutkowski L, Gonzalez E, Joncas M, Von Davier M: International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher 2010,39(2):142–151. 10.3102/0013189X10363170
    • (2010) Educational Researcher , vol.39 , Issue.2 , pp. 142-151
    • Rutkowski, L.1    Gonzalez, E.2    Joncas, M.3    Von Davier, M.4
  • 46
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • Schafer JL: Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica 2003,57(1):19–35. 10.1111/1467-9574.00218
    • (2003) Statistica Neerlandica , vol.57 , Issue.1 , pp. 19-35
    • Schafer, J.L.1
  • 47
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer JL, Graham JW: Missing data: our view of the state of the art. Psychological Methods 2002,7(2):147–177.
    • (2002) Psychological Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 48
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing data problems: a data analyst’s perspective
    • Schafer JL, Olsen MK: Multiple imputation for multivariate missing data problems: a data analyst’s perspective. Multivariate Behavioral Research 1998, 33: 545–571. 10.1207/s15327906mbr3304_5
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 50
    • 65249094801 scopus 로고    scopus 로고
    • Multiple imputation with large data sets: a case study of the children’s mental health initiative
    • Stuart EA, Azur M, Frangakis C, Leaf P: Multiple imputation with large data sets: a case study of the children’s mental health initiative. American Journal of Epidemiology 2009,169(9):1133–1139. 10.1093/aje/kwp026
    • (2009) American Journal of Epidemiology , vol.169 , Issue.9 , pp. 1133-1139
    • Stuart, E.A.1    Azur, M.2    Frangakis, C.3    Leaf, P.4
  • 51
    • 84863414529 scopus 로고    scopus 로고
    • Multiple imputation with diagnostics (mi) in R: opening windows into the black box
    • Su YS, Gelman A, Hill J, Yajima M: Multiple imputation with diagnostics (mi) in R: opening windows into the black box. Journal of Statistical Software 2011,45(2):1–13.
    • (2011) Journal of Statistical Software , vol.45 , Issue.2 , pp. 1-13
    • Su, Y.S.1    Gelman, A.2    Hill, J.3    Yajima, M.4
  • 53
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • Van Buuren S: Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 2007,16(3):219–242. 10.1177/0962280206074463
    • (2007) Statistical Methods in Medical Research , vol.16 , Issue.3 , pp. 219-242
    • Van Buuren, S.1
  • 54
  • 55
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • Van Buuren S, Boshuizen HC, Knook DL: Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999, 18: 681–694. 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
    • (1999) Statistics in Medicine , vol.18 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 57
    • 77955271783 scopus 로고    scopus 로고
    • Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables
    • White IR, Daniel R, Royston P: Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Computational Statistics and Data Analysis 2010, 54: 2267–2275. 10.1016/j.csda.2010.04.005
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 2267-2275
    • White, I.R.1    Daniel, R.2    Royston, P.3
  • 58
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White IR, Royston P, Wood AM: Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine 2011, 30: 377–399. 10.1002/sim.4067
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 59
    • 0345659235 scopus 로고    scopus 로고
    • Multiple imputation: theory and method
    • Zhang P: Multiple imputation: theory and method. International Statistical Review 2003,71(3):581–592.
    • (2003) International Statistical Review , vol.71 , Issue.3 , pp. 581-592
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.