메뉴 건너뛰기




Volumn 22, Issue 2, 2013, Pages 287-294

Ensemble learning for wind profile prediction with missing values

Author keywords

Ensemble learning; Machine Learning; Missing value recovery; Neural Network; Wind profile prediction

Indexed keywords

COMPUTER SYSTEM RECOVERY; FORECASTING; INTELLIGENT COMPUTING; NEURAL NETWORKS; RECOVERY;

EID: 84872520585     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0708-1     Document Type: Article
Times cited : (12)

References (47)
  • 1
    • 84872548270 scopus 로고    scopus 로고
    • Airport station (ASOS/AWOS). [online], Available
    • Airport station (ASOS/AWOS). [online], Available: http://climate. sdstate. edu/airport/surface/archive. asp.
  • 3
    • 70349151031 scopus 로고    scopus 로고
    • U. S. Department of Energy, [online], Available
    • U. S. Department of Energy (2008) The smart grid: an introduction; [online], Available: http://www. oe. energy. gov/smartgrid. htm.
    • (2008) The smart grid: An introduction
  • 4
    • 33644535120 scopus 로고    scopus 로고
    • Framework for regression-based missing data imputation methods in online mspc
    • Arteaga F, Ferrer A (2005) Framework for regression-based missing data imputation methods in online mspc. J Chemom 19(8): 439-447.
    • (2005) J Chemom , vol.19 , Issue.8 , pp. 439-447
    • Arteaga, F.1    Ferrer, A.2
  • 5
    • 0022452523 scopus 로고
    • Stochastic simulation of hourly and daily average wind speed sequences
    • Balouktsis A, Tsanakas D, Vachtsevanos G (1986) Stochastic simulation of hourly and daily average wind speed sequences. Wind Eng 10(1): 1-11.
    • (1986) Wind Eng , vol.10 , Issue.1 , pp. 1-11
    • Balouktsis, A.1    Tsanakas, D.2    Vachtsevanos, G.3
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2): 123-140.
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2): 123-140.
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45(1): 5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and application to boosting
    • Freund Y, Schapire RE (1997) A decision-theoretic generalization of online learning and application to boosting. J Comput Syst Sci 55(1): 119-139.
    • (1997) J Comput Syst Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 33244459555 scopus 로고    scopus 로고
    • A self-organizing learning array system for power quality classification based on wavelet transform
    • He H, Starzyk JA (2006) A self-organizing learning array system for power quality classification based on wavelet transform. IEEE Trans Power Deliv 21: 286-295.
    • (2006) IEEE Trans Power Deliv , vol.21 , pp. 286-295
    • He, H.1    Starzyk, J.A.2
  • 16
    • 0032139235 scopus 로고    scopus 로고
    • Random subspace method for constructing decision forests
    • Ho TK (1998) Random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8): 832-844.
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 17
    • 0011187879 scopus 로고    scopus 로고
    • Multiple classifier combination: lessons and next steps
    • Ho TK (2003) Multiple classifier combination: lessons and next steps. Hybrid Methods Pattern Recognit (2): 219-230.
    • (2003) Hybrid Methods Pattern Recognit , vol.2 , pp. 219-230
    • Ho, T.K.1
  • 20
    • 0001940458 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • Jordan MJ, Jacobs RA (1991) Hierarchical mixtures of experts and the em algorithm. Neural Comput 6(2): 79-87.
    • (1991) Neural Comput , vol.6 , Issue.2 , pp. 79-87
    • Jordan, M.J.1    Jacobs, R.A.2
  • 21
    • 0029617280 scopus 로고
    • Convergence results for the em approach to mixtures of experts architectures
    • Jordan MJ, Xu L (1995) Convergence results for the em approach to mixtures of experts architectures. Neural Netw 8(9): 1409-1431.
    • (1995) Neural Netw , vol.8 , Issue.9 , pp. 1409-1431
    • Jordan, M.J.1    Xu, L.2
  • 22
    • 0001931325 scopus 로고    scopus 로고
    • Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan
    • Kamal L, Jafri YZ (1997) Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Sol Energy 61(1): 23-32.
    • (1997) Sol Energy , vol.61 , Issue.1 , pp. 23-32
    • Kamal, L.1    Jafri, Y.Z.2
  • 26
    • 85054435084 scopus 로고
    • chapter Neural network ensembles, cross validation and active learning. MIT Press
    • Krogh A, Vedelsby J (1995) Advances in neural information processing systems, volume 7, chapter Neural network ensembles, cross validation and active learning. MIT Press, pp 231-238.
    • (1995) Advances in neural information processing systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 27
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51: 181-207.
    • (2003) Mach Learn , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 31
    • 0024884032 scopus 로고
    • Conceptual modeling of coincident failures in multiversion software
    • Littlewood B, Miller D (1989) Conceptual modeling of coincident failures in multiversion software. IEEE Trans Softw Eng 15(12): 1596-1614.
    • (1989) IEEE Trans Softw Eng , vol.15 , Issue.12 , pp. 1596-1614
    • Littlewood, B.1    Miller, D.2
  • 32
    • 0035506257 scopus 로고    scopus 로고
    • Analyzing data sets with missing data: an empirical evaluation of imputation methods and likelihood-based methods
    • Myrtveit I, Stensrud E, Olsson E (2001) Analyzing data sets with missing data: an empirical evaluation of imputation methods and likelihood-based methods. IEEE Trans Softw Eng 27(11): 999-1013.
    • (2001) IEEE Trans Softw Eng , vol.27 , Issue.11 , pp. 999-1013
    • Myrtveit, I.1    Stensrud, E.2    Olsson, E.3
  • 33
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11: 169-198.
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 34
    • 0346955658 scopus 로고    scopus 로고
    • The impact of bootstrap methods on time series analysis
    • Politis DN (2003) The impact of bootstrap methods on time series analysis. Stat Sci 18(2): 219-230.
    • (2003) Stat Sci , vol.18 , Issue.2 , pp. 219-230
    • Politis, D.N.1
  • 35
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • Rosen B (1996) Ensemble learning using decorrelated neural networks. Conn Sci 8(3/4): 373-383.
    • (1996) Conn Sci , vol.8 , Issue.3-4 , pp. 373-383
    • Rosen, B.1
  • 37
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin DB (1996) Multiple imputation after 18+ years. J Am Stat Assoc 91(434): 473-489.
    • (1996) J Am Stat Assoc , vol.91 , Issue.434 , pp. 473-489
    • Rubin, D.B.1
  • 38
    • 34548229532 scopus 로고    scopus 로고
    • chapter prediction with missing Inputs
    • Sarle WS (1998) Proceedings of JCIS, volume 2, chapter prediction with missing Inputs, pp 399-402.
    • (1998) Proceedings of JCIS , vol.2 , pp. 399-402
    • Sarle, W.S.1
  • 39
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos A (2000) A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 21(1): 23-35.
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 42
    • 0035481267 scopus 로고    scopus 로고
    • Software cost estimation with incomplete data
    • Strike K, Emam KE, Madhavji N (2001) Software cost estimation with incomplete data. IEEE Trans Softw Eng 27(10): 890-908.
    • (2001) IEEE Trans Softw Eng , vol.27 , Issue.10 , pp. 890-908
    • Strike, K.1    Emam, K.E.2    Madhavji, N.3
  • 45
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH (1992) Stacked generalization. Neural Netw 5(2): 241-259.
    • (1992) Neural Netw , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 46
    • 33845432024 scopus 로고    scopus 로고
    • Self-organizing learning array and its application to economic and financial problems
    • Zhu Z, He H, Starzyk JA, Tseng C (2007) Self-organizing learning array and its application to economic and financial problems. Inform Sci 177: 1180-1192.
    • (2007) Inform Sci , vol.177 , pp. 1180-1192
    • Zhu, Z.1    He, H.2    Starzyk, J.A.3    Tseng, C.4
  • 47
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9): 1263-1284.
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.