-
5
-
-
0003123930
-
Forecasting with Artificial Neural Networks: The State of the Art
-
10.1016/S0169-2070(97)00044-7
-
Zhang, G.P., Patuwo, B.E., and Hu, M.Y., Forecasting with Artificial Neural Networks: The State of the Art, Int. J. Forecast., 1998, vol. 14, no. 5, pp. 35-62.
-
(1998)
Int. J. Forecast.
, vol.14
, Issue.5
, pp. 35-62
-
-
Zhang, G.P.1
Patuwo, B.E.2
Hu, M.Y.3
-
6
-
-
0035478854
-
Random Forests
-
10.1023/A:1010933404324 1007.68152
-
Breiman, H., Random Forests, J. Machine Learning, 2001, vol. 45, pp. 5-32.
-
(2001)
J. Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, H.1
-
7
-
-
76649085200
-
A Hybrid ARIMA and Neural Network Model for Short-Term Price Forecasting in Deregulated Market
-
10.1109/TPWRS.2009.2036488
-
Areekul, P., Senjyu, T., Toyama, H., and Yona, A., A Hybrid ARIMA and Neural Network Model for Short-Term Price Forecasting in Deregulated Market, IEEE Trans. Power Syst., 2010, vol. 25, no. 1, pp. 524-530.
-
(2010)
IEEE Trans. Power Syst.
, vol.25
, Issue.1
, pp. 524-530
-
-
Areekul, P.1
Senjyu, T.2
Toyama, H.3
Yona, A.4
-
8
-
-
0000032342
-
How Effective are Neural Networks at Forecasting and Prediction? A Review and Evaluation
-
10.1002/(SICI)1099-131X(1998090)17:5/6<481: AID-FOR709>3.0.CO;2-Q
-
Adya, M. and Collopy, F., How Effective are Neural Networks at Forecasting and Prediction? A Review and Evaluation, Int. J. Forecast., 1998, vol. 17, nos. 5-6, pp. 481-495.
-
(1998)
Int. J. Forecast.
, vol.17
, Issue.5-6
, pp. 481-495
-
-
Adya, M.1
Collopy, F.2
-
9
-
-
0030527298
-
Neural Network Forecasting of Quarterly Accounting Earnings
-
10.1016/S0169-2070(96)00706-6
-
Callen, L.J., Kwan, C.C., Yip, C.P., and Yuan, Y., Neural Network Forecasting of Quarterly Accounting Earnings, Int. J. Forecast., 1996, vol. 12, no. 4, pp. 475-482.
-
(1996)
Int. J. Forecast.
, vol.12
, Issue.4
, pp. 475-482
-
-
Callen, L.J.1
Kwan, C.C.2
Yip, C.P.3
Yuan, Y.4
-
10
-
-
4344586989
-
Linear Versus Neural Network Forecasts for European Industrial Production Series
-
10.1016/S0169-2070(03)00062-1
-
Heravi, S., Osborn, D.R., and Birchenhall, C.R., Linear Versus Neural Network Forecasts for European Industrial Production Series, Int. J. Forecast., 2004, vol. 20, no. 3, pp. 435-446.
-
(2004)
Int. J. Forecast.
, vol.20
, Issue.3
, pp. 435-446
-
-
Heravi, S.1
Osborn, D.R.2
Birchenhall, C.R.3
-
11
-
-
84875899507
-
Toward Automatic Time-Series Forecasting Using Neural Networks
-
10.1109/TNNLS.2012.2198074
-
Yan, W., Toward Automatic Time-Series Forecasting Using Neural Networks, IEEE Trans. Neural Networks Learning Syst., 2012, vol. 23, no. 7, pp. 1028-1039.
-
(2012)
IEEE Trans. Neural Networks Learning Syst.
, vol.23
, Issue.7
, pp. 1028-1039
-
-
Yan, W.1
-
12
-
-
0010864753
-
Pattern Recognition Using Generalized Portraits
-
Vapnik, V.N. and Lerner, A.Ya., Pattern Recognition Using Generalized Portraits, Autom. Remote Control, 1963, vol. 24, no. 6, pp. 709-715.
-
(1963)
Autom. Remote Control
, vol.24
, Issue.6
, pp. 709-715
-
-
Vapnik, V.N.1
Lerner, A.2
-
15
-
-
85029325600
-
An Application of Cluster Analysis to Automated Defect Recognition
-
Vasil'ev, I.L. and Sidorov, D.N., An Application of Cluster Analysis to Automated Defect Recognition, Probl. Upravlen., 2007, no. 4, pp. 36-42.
-
(2007)
Probl. Upravlen.
, pp. 36-42
-
-
Vasil'Ev, I.L.1
Sidorov, D.N.2
-
16
-
-
84918441630
-
Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition
-
10.1109/PGEC.1965.264137 0152.18206
-
Cover, T., Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition, IEEE Trans. Electron. Comput., 1965, vol. 14, pp. 326-334.
-
(1965)
IEEE Trans. Electron. Comput.
, vol.14
, pp. 326-334
-
-
Cover, T.1
-
17
-
-
5444236478
-
The Empirical Mode Decomposition and the Hilbert Spectrum for Non-Linear and Non-Stationary Time Series Analysis
-
10.1098/rspa.1998.0193 1631591
-
Huang, N.E., Zheng, S., Long, S.R., et al., The Empirical Mode Decomposition and the Hilbert Spectrum for Non-Linear and Non-Stationary Time Series Analysis, Proc. Royal Soc. London, Ser. A: Math., Phys. Eng. Sci., 1971, vol. 454, pp. 903-995.
-
(1971)
Proc. Royal Soc. London, Ser. A: Math., Phys. Eng. Sci.
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Zheng, S.2
Long, S.R.3
-
18
-
-
16544368972
-
-
Nauka Novosibirsk
-
Gorban', A.N., Dunin-Barkovskii, V.L., and Mirkes, E.M., Neiroinformatika (Neuroinformatics), Novosibirsk: Nauka, 1998.
-
(1998)
Neiroinformatika (Neuroinformatics)
-
-
Gorban, A.N.1
Dunin-Barkovskii, V.L.2
Mirkes, E.M.3
-
19
-
-
79958266385
-
Application of Neural Network Technologies for Price Forecasting in the Liberalized Electricity Market
-
Gerikh, V.P., Kolosok, I.N., Kurbatsky, V.G., and Tomin, N.V., Application of Neural Network Technologies for Price Forecasting in the Liberalized Electricity Market, Power Electr. Eng., Sci. J. Riga Techn. Univ., 2009, no. 5, pp. 91-96.
-
(2009)
Power Electr. Eng., Sci. J. Riga Techn. Univ.
, pp. 91-96
-
-
Gerikh, V.P.1
Kolosok, I.N.2
Kurbatsky, V.G.3
Tomin, N.V.4
-
20
-
-
0037186544
-
Stochastic Gradient Boosting
-
10.1016/S0167-9473(01)00065-2 1072.65502 1884869
-
Friedman, J.H., Stochastic Gradient Boosting, Comput. Statist. Data Anal., 2002, vol. 38, pp. 367-378.
-
(2002)
Comput. Statist. Data Anal.
, vol.38
, pp. 367-378
-
-
Friedman, J.H.1
-
21
-
-
49249109272
-
RBF Neural Network and ANFIS-Based Short-Term Load Forecasting Approach in Real-Time Price Environment
-
10.1109/TPWRS.2008.922249
-
Yun, Z., RBF Neural Network and ANFIS-Based Short-Term Load Forecasting Approach in Real-Time Price Environment, IEEE Trans. Power Syst., 2008, vol. 23, no. 3, pp. 853-858.
-
(2008)
IEEE Trans. Power Syst.
, vol.23
, Issue.3
, pp. 853-858
-
-
Yun, Z.1
-
23
-
-
0031345518
-
Algorithm 778: L-BFGS-B, Fortran Subroutines for Large Scale Bound Constrained Optimization
-
10.1145/279232.279236 0912.65057 1671706
-
Zhu, C., Byrd, C.V., Lu, P., and Nocedal, J., Algorithm 778: L-BFGS-B, Fortran Subroutines for Large Scale Bound Constrained Optimization, ACM Trans. Math. Softw., 1997, vol. 23, no. 4, pp. 550-560.
-
(1997)
ACM Trans. Math. Softw.
, vol.23
, Issue.4
, pp. 550-560
-
-
Zhu, C.1
Byrd, C.V.2
Lu, P.3
Nocedal, J.4
-
24
-
-
0040742916
-
-
Nauka Moscow
-
Aizerman, M.A., Braverman, E.M., and Rozonoer, L.I., Metod potentsial'nykh funktsii v teorii obucheniya mashin (Method of Potential Functions in Machine Learning Theory), Moscow: Nauka, 1970.
-
(1970)
Metod potentsial'Nykh Funktsii v Teorii Obucheniya Mashin (Method of Potential Functions in Machine Learning Theory)
-
-
Aizerman, M.A.1
Braverman, E.M.2
Rozonoer, L.I.3
-
27
-
-
84928153090
-
-
Polyak, B. and Nazin, S., Eds., Moscow: Mosk. Tsentr Nepreryvn. Mat. Obrazov.
-
Nesterov, Yu.E., Vvedenie v vypukluyu optimizatsiyu (Introduction to Convex Optimization), Polyak, B. and Nazin, S., Eds., Moscow: Mosk. Tsentr Nepreryvn. Mat. Obrazov., 2010.
-
(2010)
Vvedenie v Vypukluyu Optimizatsiyu (Introduction to Convex Optimization)
-
-
Nesterov, Yu.E.1
-
28
-
-
0024880831
-
Multilayer Feedforward Networks are Universal Approximators
-
10.1016/0893-6080(89)90020-8
-
Hornik, K., Stinchcombe, M., and White, H., Multilayer Feedforward Networks are Universal Approximators, Neural Networks, 1989, vol. 2, pp. 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
29
-
-
0442326792
-
On Empirical Mode Decomposition and Its Algorithms
-
10.1109/LSP.2003.821662
-
Flandrin, P., Rilling, G., and Goncalves, P., On Empirical Mode Decomposition and Its Algorithms, IEEE Signal Proc. Lett., 2004, vol. 11, no. 2, pp. 112-114.
-
(2004)
IEEE Signal Proc. Lett.
, vol.11
, Issue.2
, pp. 112-114
-
-
Flandrin, P.1
Rilling, G.2
Goncalves, P.3
-
30
-
-
0021819411
-
Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm
-
10.1007/BF00940812 778156
-
Czerny, V., Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm, J. Optim. Theory Appl., 1985, vol. 45, pp. 41-51.
-
(1985)
J. Optim. Theory Appl.
, vol.45
, pp. 41-51
-
-
Czerny, V.1
-
31
-
-
84901266177
-
-
State Univ. of Information Technologies, Mechanics, and Optics St. Petersburg
-
Shumkov, D.S., Development and Study of Forecasting Methods Based on SVM Models, Cand. Sci. (Tech.) Dissertation, St. Petersburg: State Univ. of Information Technologies, Mechanics, and Optics, 2009.
-
(2009)
Development and Study of Forecasting Methods Based on SVM Models
-
-
Shumkov, D.S.1
-
33
-
-
80052565295
-
A Hierarchical System for Automated Control over Frequency and Overflows in Active Power of EES Russia
-
Andreev, A.V., Livshits, G.N., Mashanskii, A.M., et al., A Hierarchical System for Automated Control over Frequency and Overflows in Active Power of EES Russia, Elektrich. Stantsii, 2010, no. 3, pp. 43-51.
-
(2010)
Elektrich. Stantsii
, pp. 43-51
-
-
Andreev, A.V.1
Livshits, G.N.2
Mashanskii, A.M.3
-
34
-
-
85024423711
-
New Results in Linear Filtering and Prediction Theory
-
10.1115/1.3658902 234760
-
Kalman, R.E. and Bucy, R.S., New Results in Linear Filtering and Prediction Theory, Trans. ASME, Ser. D, J. Basic Eng., 1961, vol. 83, pp. 95-108.
-
(1961)
Trans. ASME, Ser. D, J. Basic Eng.
, vol.83
, pp. 95-108
-
-
Kalman, R.E.1
Bucy, R.S.2
|