-
2
-
-
54249099241
-
Consistency of random forests and other averaging classifiers
-
Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random forests and other averaging classifiers. The Journal of Machine Learning Research, 9:2015-2033.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 2015-2033
-
-
Biau, G.1
Devroye, L.2
Lugosi, G.3
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine learning, 45(1):5-32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
0011996706
-
-
Statistics Department University of California Berkeley, CA, USA
-
Breiman, L. (2002). Manual on setting up, using, and understanding random forests v3. 1. Statistics Department University of California Berkeley, CA, USA.
-
(2002)
Manual on Setting Up, Using, and Understanding Random Forests v3 1
-
-
Breiman, L.1
-
7
-
-
0003802343
-
-
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and regression trees.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
8
-
-
77957922514
-
Variable selection using random forests
-
Genuer, R., Poggi, J.-M., and Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14):2225-2236.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.14
, pp. 2225-2236
-
-
Genuer, R.1
Poggi, J.-M.2
Tuleau-Malot, C.3
-
9
-
-
33646430006
-
Extremely randomized trees
-
Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1):3-42.
-
(2006)
Machine Learning
, vol.63
, Issue.1
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
11
-
-
85020057289
-
Variable importance in binary regression trees and forests
-
Ishwaran, H. (2007). Variable importance in binary regression trees and forests. Electronic Journal of Statistics, 1:519-537.
-
(2007)
Electronic Journal of Statistics
, vol.1
, pp. 519-537
-
-
Ishwaran, H.1
-
12
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1):273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
13
-
-
0345040873
-
Classification and regression by randomforest
-
Liaw, A. andWiener, M. (2002). Classification and regression by randomforest. R news, 2(3):18-22.
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
16
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. The Journal of Machine Learning Research, 12:2825-2830.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
-
17
-
-
48549095457
-
Conditional variable importance for random forests
-
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008). Conditional variable importance for random forests. BMC bioinformatics, 9(1):307.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 307
-
-
Strobl, C.1
Boulesteix, A.-L.2
Kneib, T.3
Augustin, T.4
Zeileis, A.5
-
18
-
-
33847096395
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
-
Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1):25.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.-L.2
Zeileis, A.3
Hothorn, T.4
-
19
-
-
0028443213
-
Technical note: Bias in information-based measures in decision tree induction
-
White, A. P. and Liu, W. Z. (1994). Technical note: Bias in information-based measures in decision tree induction. Machine Learning, 15(3):321-329.
-
(1994)
Machine Learning
, vol.15
, Issue.3
, pp. 321-329
-
-
White, A.P.1
Liu, W.Z.2
-
20
-
-
33646435649
-
-
PhD thesis, Utah State University, Department of Mathematics and Statistics
-
Zhao, G. (2000). A new perspective on classification. PhD thesis, Utah State University, Department of Mathematics and Statistics.
-
(2000)
A New Perspective on Classification
-
-
Zhao, G.1
|