메뉴 건너뛰기




Volumn 35, Issue PB, 2015, Pages 359-367

Mapping forest biomass from space - Fusion of hyperspectralEO1-hyperion data and Tandem-X and WorldView-2 canopy heightmodels

Author keywords

Biomass modelling; Canopy height models; Hyperspectral; Machine learning algorithms; Tandem X; Worldview 2

Indexed keywords

ALGORITHM; BIOMASS; FOREST CANOPY; FOREST DYNAMICS; SATELLITE DATA; SATELLITE IMAGERY; TANDEM-X; VEGETATION MAPPING; WORLDVIEW;

EID: 84924298708     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2014.10.008     Document Type: Article
Times cited : (67)

References (51)
  • 2
    • 84865809543 scopus 로고    scopus 로고
    • Biomassfunctions for the two alien tree species Prunus serotina Ehrh. and Robinia pseu-doacacia L. in floodplain forests of Northern Italy
    • Annighöfer, P., Mölder, I., Zerbe, S., Kawaletz, H., Terwei, A., Ammer, C., 2012. Biomassfunctions for the two alien tree species Prunus serotina Ehrh. and Robinia pseu-doacacia L. in floodplain forests of Northern Italy. Eur. J. Forest Res. 131 (5),1619-1635.
    • (2012) Eur. J. Forest Res , vol.131 , Issue.5 , pp. 1619-1635
    • Annighöfer, P.1    Mölder, I.2    Zerbe, S.3    Kawaletz, H.4    Terwei, A.5    Ammer, C.6
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algo-rithms: bagging, boosting, and variants
    • Bauer, E., Kohavi, R., 1999. An empirical comparison of voting classification algo-rithms: bagging, boosting, and variants. Mach. Learn. 36 (1-2), 105-139.
    • (1999) Mach. Learn , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5-32.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 84862191396 scopus 로고    scopus 로고
    • Estimating aboveground carbon stocks of aforest affected by mountain pine beetle in Idaho using LiDAR and multispectralimagery
    • Bright, B.C., Hicke, J.A., Hudak, A.T., 2012. Estimating aboveground carbon stocks of aforest affected by mountain pine beetle in Idaho using LiDAR and multispectralimagery. Remote Sens. Environ. 124, 270-281.
    • (2012) Remote Sens. Environ , vol.124 , pp. 270-281
    • Bright, B.C.1    Hicke, J.A.2    Hudak, A.T.3
  • 6
    • 0242709857 scopus 로고    scopus 로고
    • Why principal component analysis is not anappropriate feature extraction method for hyperspectral data
    • July. In: Geoscienceand Remote Sensing Symposium, 2003. IGARSS'03. Proceedings
    • Cheriyadat, A., Bruce, L.M., 2003, July. Why principal component analysis is not anappropriate feature extraction method for hyperspectral data. In: Geoscienceand Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE Inter-national, vol. 6, pp. 3420-3422.
    • (2003) 2003 IEEE Inter-national , vol.6 , pp. 3420-3422
    • Cheriyadat, A.1    Bruce, L.M.2
  • 7
    • 80052609457 scopus 로고    scopus 로고
    • Estimation of tropical rain forestaboveground biomass with small-footprint LiDAR and hyperspectral sensors
    • Clark, M.L., Roberts, D.A., Ewel, J.J., Clark, D.B., 2011. Estimation of tropical rain forestaboveground biomass with small-footprint LiDAR and hyperspectral sensors. Remote Sens. Environ. 115, 2931-2942.
    • (2011) Remote Sens. Environ , vol.115 , pp. 2931-2942
    • Clark, M.L.1    Roberts, D.A.2    Ewel, J.J.3    Clark, D.B.4
  • 8
    • 33745762638 scopus 로고    scopus 로고
    • Hyperion Data Processing Workshop: Hands-on ProcessingInstruction
    • CSIRO Earth Observation Centre, Australia.
    • Datt, B., Jupp, D., 2004. Hyperion Data Processing Workshop: Hands-on ProcessingInstruction. CSIRO Earth Observation Centre, Australia.
    • (2004)
    • Datt, B.1    Jupp, D.2
  • 9
    • 0027642187 scopus 로고
    • Long sequence time series evaluation using standard-ised principal components
    • Eastman, J.R., Fulk, M., 1993. Long sequence time series evaluation using standard-ised principal components. Photogr. Eng. Remote Sens. 59, 991-996.
    • (1993) Photogr. Eng. Remote Sens , vol.59 , pp. 991-996
    • Eastman, J.R.1    Fulk, M.2
  • 10
    • 84904480283 scopus 로고    scopus 로고
    • Accuracy of vegetation height and terrain ele-vation derived from ICESat/GLAS in forested areas
    • Enßle, F., Heinzel, J., Koch, B., 2014. Accuracy of vegetation height and terrain ele-vation derived from ICESat/GLAS in forested areas. Int. J. Appl. Earth Observ. Geoinf., http://dx.doi.org/10.1016/j.jag.2014.02.009.
    • (2014) Int. J. Appl. Earth Observ. Geoinf
    • Enßle, F.1    Heinzel, J.2    Koch, B.3
  • 12
    • 84908097106 scopus 로고    scopus 로고
    • Importance of sample size, data type and prediction method for remotesensing-based estimations of aboveground forest biomass
    • Fassnacht, F.E., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P., Koch, B.,2014b. Importance of sample size, data type and prediction method for remotesensing-based estimations of aboveground forest biomass. Remote Sens. Envi-ron. 154, 102-114.
    • (2014) Remote Sens. Envi-ron , vol.154 , pp. 102-114
    • Fassnacht, F.E.1    Hartig, F.2    Latifi, H.3    Berger, C.4    Hernández, J.5    Corvalán, P.6    Koch, B.7
  • 13
    • 78650877896 scopus 로고    scopus 로고
    • Simulated impactof sample plot size and co-registration error on the accuracy and uncertaintyof LiDAR-derived estimates of forest stand biomass
    • Frazer, G.W., Magnussen, S., Wulder, M.A., Niemann, K.O., 2011. Simulated impactof sample plot size and co-registration error on the accuracy and uncertaintyof LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ. 115(2), 636-649.
    • (2011) Remote Sens. Environ , vol.115 , Issue.2 , pp. 636-649
    • Frazer, G.W.1    Magnussen, S.2    Wulder, M.A.3    Niemann, K.O.4
  • 14
    • 0034923205 scopus 로고    scopus 로고
    • Modeling spatially explicit for-est structural attributes using generalized additive models
    • Frescino, T.S., Edwards, T.C., Moisen, G.G., 2001. Modeling spatially explicit for-est structural attributes using generalized additive models. J. Veg. Sci. 12 (1),15-26.
    • (2001) J. Veg. Sci. , vol.12 , Issue.1 , pp. 15-26
    • Frescino, T.S.1    Edwards, T.C.2    Moisen, G.G.3
  • 15
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29 (5), 1189-1232.
    • (2001) Ann. Stat. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 17
    • 84897585667 scopus 로고    scopus 로고
    • A framework for mapping treespecies combining hyperspectral and LiDAR data: role of selected classifiersand sensor across three spatial scales
    • Ghosh, A., Fassnacht, F.E., Joshi, P.K., Koch, B., 2014. A framework for mapping treespecies combining hyperspectral and LiDAR data: role of selected classifiersand sensor across three spatial scales. Int. J. Appl. Earth Observ. Geoinf. 26,49-63.
    • (2014) Int. J. Appl. Earth Observ. Geoinf , vol.26 , pp. 49-63
    • Ghosh, A.1    Fassnacht, F.E.2    Joshi, P.K.3    Koch, B.4
  • 18
    • 37648999681 scopus 로고    scopus 로고
    • Monitoring and estimating trop-ical forest carbon stocks: making REDD a reality
    • Gibbs, H.K., Brown, S., Niles, J.O., Foley, J.A., 2007. Monitoring and estimating trop-ical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2 (4),045023.
    • (2007) Environ. Res. Lett , vol.2 , Issue.4
    • Gibbs, H.K.1    Brown, S.2    Niles, J.O.3    Foley, J.A.4
  • 19
    • 0032216011 scopus 로고    scopus 로고
    • Radar interferogram filtering for geophysicalapplications
    • Goldstein, R.M., Werner, C.L., 1998. Radar interferogram filtering for geophysicalapplications. Geophys. Res. Lett. 25 (21), 4035-4038.
    • (1998) Geophys. Res. Lett , vol.25 , Issue.21 , pp. 4035-4038
    • Goldstein, R.M.1    Werner, C.L.2
  • 20
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized addi-tive models in studies of species distributions: setting the scene
    • Guisan, A., Edwards Jr., T.C., Hastie, T., 2002. Generalized linear and generalized addi-tive models in studies of species distributions: setting the scene. Ecol. Model.157 (2), 89-100.
    • (2002) Ecol. Model , vol.157 , Issue.2 , pp. 89-100
    • Guisan, A.1    Edwards, T.C.2    Hastie, T.3
  • 22
    • 84924391118 scopus 로고
    • In: Chambers, S.J.M., Hastie, T.J. (Eds.). Chapter 7 of Statistical Models. Wadsworth & Brooks/Cole.
    • Hastie, T.J., 1991. In: Chambers, S.J.M., Hastie, T.J. (Eds.), Generalized Additive Mod-els. Chapter 7 of Statistical Models. Wadsworth & Brooks/Cole.
    • (1991) Generalized Additive Mod-els
    • Hastie, T.J.1
  • 23
    • 78249231399 scopus 로고    scopus 로고
    • Status and future of laser scanning, synthetic aperture radar andhyperspectral remote sensing data for forest biomass assessment
    • Koch, B., 2010. Status and future of laser scanning, synthetic aperture radar andhyperspectral remote sensing data for forest biomass assessment. ISPRS J. Pho-togr. Remote Sens. 65, 581-590.
    • (2010) ISPRS J. Pho-togr. Remote Sens , vol.65 , pp. 581-590
    • Koch, B.1
  • 25
    • 77957768057 scopus 로고    scopus 로고
    • Non-parametric prediction and mappingof standing timber volume and biomass in a temperate forest: application ofmultiple optical/LiDAR-derived predictors
    • Latifi, H., Nothdurft, A., Koch, B., 2010. Non-parametric prediction and mappingof standing timber volume and biomass in a temperate forest: application ofmultiple optical/LiDAR-derived predictors. Forestry 83, 395-407.
    • (2010) Forestry , vol.83 , pp. 395-407
    • Latifi, H.1    Nothdurft, A.2    Koch, B.3
  • 26
    • 84857753065 scopus 로고    scopus 로고
    • Forest structure modeling with combinedairborne hyperspectral and LiDAR data
    • Latifi, H., Fassnacht, F., Koch, B., 2012. Forest structure modeling with combinedairborne hyperspectral and LiDAR data. Remote Sens. Environ. 121, 10-25.
    • (2012) Remote Sens. Environ , vol.121 , pp. 10-25
    • Latifi, H.1    Fassnacht, F.2    Koch, B.3
  • 29
    • 33646702801 scopus 로고    scopus 로고
    • The potential and challenge of remote sensing-based biomass estima-tion
    • Lu, D., 2006. The potential and challenge of remote sensing-based biomass estima-tion. Int. J. Remote Sens. 27 (7), 1297-1328.
    • (2006) Int. J. Remote Sens , vol.27 , Issue.7 , pp. 1297-1328
    • Lu, D.1
  • 30
    • 84888003411 scopus 로고    scopus 로고
    • First 2 years of TanDEM-Xmission: interferometric performance overview
    • Martone, M., Rizzoli, P., Bräutigam, B., Krieger, G., 2013. First 2 years of TanDEM-Xmission: interferometric performance overview. Radio Sci. 48 (5), 617-627.
    • (2013) Radio Sci , vol.48 , Issue.5 , pp. 617-627
    • Martone, M.1    Rizzoli, P.2    Bräutigam, B.3    Krieger, G.4
  • 31
    • 0004496329 scopus 로고    scopus 로고
    • Use of generalized linear models and digital datain a forest inventory of northern Utah
    • Moisen, G.G., Edwards Jr., T.C., 1999. Use of generalized linear models and digital datain a forest inventory of northern Utah. J. Agricult. Biol. Environ. Stat., 372-390.
    • (1999) J. Agricult. Biol. Environ. Stat. , pp. 372-390
    • Moisen, G.G.1    Edwards, T.C.2
  • 32
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modelling techniques for predict-ing forest characteristics
    • Moisen, G.G., Frescino, T.S., 2002. Comparing five modelling techniques for predict-ing forest characteristics. Ecol. Model. 157 (2), 209-225.
    • (2002) Ecol. Model. , vol.157 , Issue.2 , pp. 209-225
    • Moisen, G.G.1    Frescino, T.S.2
  • 33
    • 33750041371 scopus 로고    scopus 로고
    • Predicting tree species presence and basal area in Utah: a compari-son of stochastic gradient boosting, generalized additive models, and tree-basedmethods
    • Moisen, G.G., Freeman, E.A., Blackard, J.A., Frescino, T.S., Zimmermann, N.E., EdwardsJr., T.C., 2006. Predicting tree species presence and basal area in Utah: a compari-son of stochastic gradient boosting, generalized additive models, and tree-basedmethods. Ecol. Model. 199 (2), 176-187.
    • (2006) Ecol. Model , vol.199 , Issue.2 , pp. 176-187
    • Moisen, G.G.1    Freeman, E.A.2    Blackard, J.A.3    Frescino, T.S.4    Zimmermann, N.E.5    Edwards, T.C.6
  • 34
    • 81355127578 scopus 로고    scopus 로고
    • Model-assisted regional forest biomass estimation using LiDAR and InSARas auxiliary data: a case study from a boreal forest area
    • Næsset, E., Gobakken, T., Solberg, S., Gregoire, T.G., Nelson, R., Stahl, G., Weydahl, D.,2011. Model-assisted regional forest biomass estimation using LiDAR and InSARas auxiliary data: a case study from a boreal forest area. Remote Sens. Environ.115, 3599-3614.
    • (2011) Remote Sens. Environ , vol.115 , pp. 3599-3614
    • Næsset, E.1    Gobakken, T.2    Solberg, S.3    Gregoire, T.G.4    Nelson, R.5    Stahl, G.6    Weydahl, D.7
  • 35
    • 60749135993 scopus 로고    scopus 로고
    • Optimizing spatialimage support for quantitative mapping of natural vegetation
    • Nijland, W., Addink, E.A., De Jong, S.M., Van der Meer, F.D., 2009. Optimizing spatialimage support for quantitative mapping of natural vegetation. Remote Sens. Environ. 113 (4), 771-780.
    • (2009) Remote Sens. Environ , vol.113 , Issue.4 , pp. 771-780
    • Nijland, W.1    Addink, E.A.2    De Jong, S.M.3    Van der Meer, F.D.4
  • 36
    • 57849113270 scopus 로고    scopus 로고
    • Validation ofthe ICEsat vegetation product using crown-area-weighted mean height derivedusing crown delineation with discrete return LiDAR data
    • Pang, Y., Lefsky, M., Andersen, H.E., Miller, M.E., Sherrill, K., 2008. Validation ofthe ICEsat vegetation product using crown-area-weighted mean height derivedusing crown delineation with discrete return LiDAR data. Can. J Remote Sens. 34(2), 471-484.
    • (2008) Can. J Remote Sens , vol.34 , Issue.2 , pp. 471-484
    • Pang, Y.1    Lefsky, M.2    Andersen, H.E.3    Miller, M.E.4    Sherrill, K.5
  • 37
    • 84880586570 scopus 로고    scopus 로고
    • 3D modeling of large urban areas with stereo VHR satelliteimagery: lessons learned
    • Poli, D., Caravaggi, I., 2013. 3D modeling of large urban areas with stereo VHR satelliteimagery: lessons learned. Nat. Hazards 68 (1), 53-78.
    • (2013) Nat. Hazards , vol.68 , Issue.1 , pp. 53-78
    • Poli, D.1    Caravaggi, I.2
  • 38
    • 84920888521 scopus 로고    scopus 로고
    • Radiometric and geomet-ric evaluation of GeoEye-1. WorldView-2 and Pléiades-1A stereo images for3D information extraction
    • Poli, D., Remondino, F., Angiuli, E., Agugiaro, G., 2014. Radiometric and geomet-ric evaluation of GeoEye-1. WorldView-2 and Pléiades-1A stereo images for3D information extraction. ISPRS J. Photogr. Remote Sens., http://dx.doi.org/10.1016/j.isprsjprs.2014.04.007.
    • (2014) ISPRS J. Photogr. Remote Sens
    • Poli, D.1    Remondino, F.2    Angiuli, E.3    Agugiaro, G.4
  • 39
    • 84892350125 scopus 로고
    • Remote Sensing Digital Image Analysis: An Introduction
    • 2nded. Springer-Verlag, Berlin, Germany
    • Richards, J.A., 1993. Remote Sensing Digital Image Analysis: An Introduction, 2nded. Springer-Verlag, Berlin, Germany.
    • (1993)
    • Richards, J.A.1
  • 43
    • 84882265302 scopus 로고    scopus 로고
    • Assessment of Cartosat-1 andWorldView-2 stereo imagery in combination with a LiDAR-DTM for timbervolume estimation in a highly structured forest in Germany
    • Straub, C., Tian, J., Seitz, R., Reinartz, P., 2013. Assessment of Cartosat-1 andWorldView-2 stereo imagery in combination with a LiDAR-DTM for timbervolume estimation in a highly structured forest in Germany. Forestry 86 (4),463-473.
    • (2013) Forestry , vol.86 , Issue.4 , pp. 463-473
    • Straub, C.1    Tian, J.2    Seitz, R.3    Reinartz, P.4
  • 44
    • 84857856651 scopus 로고    scopus 로고
    • Hyperspectral Remote Sensing ofVegetation
    • CRC Press, Boca Raton, FL.
    • Thenkabail, P.S., Lyon, J.G., Huete, A. (Eds.), 2012. Hyperspectral Remote Sensing ofVegetation. CRC Press, Boca Raton, FL.
    • (2012)
    • Thenkabail, P.S.1    Lyon, J.G.2    Huete, A.3
  • 45
    • 0041738930 scopus 로고    scopus 로고
    • Structure-based forest biomass fromfusion of radar and hyperspectral observations
    • Treuhaft, R.N., Asner, G.P., Law, B.E., 2003. Structure-based forest biomass fromfusion of radar and hyperspectral observations. Geophys. Res. Lett. 30, 1472
    • (2003) Geophys. Res. Lett , vol.30 , pp. 1472
    • Treuhaft, R.N.1    Asner, G.P.2    Law, B.E.3
  • 46
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modelling with implicit variableselection by likelihood based boosting
    • Tutz, G., Binder, H., 2006. Generalized additive modelling with implicit variableselection by likelihood based boosting. Biometrics 51, 961-971.
    • (2006) Biometrics , vol.51 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 47
    • 34547723113 scopus 로고    scopus 로고
    • Treesvis-a software system for simul-taneous 3D-real-time visualisation of DTM, DSM, laser raw data, multispectraldata, simple tree and building models
    • Weinacker, H., Koch, B., Weinacker, R., 2004. Treesvis-a software system for simul-taneous 3D-real-time visualisation of DTM, DSM, laser raw data, multispectraldata, simple tree and building models. Int. Arch. Photogr. Remote Sens. Spat. Inform. Sci. 36, 90-95.
    • (2004) Int. Arch. Photogr. Remote Sens. Spat. Inform. Sci , vol.36 , pp. 90-95
    • Weinacker, H.1    Koch, B.2    Weinacker, R.3
  • 49
    • 62649126442 scopus 로고    scopus 로고
    • Methoden für die Ermittlung, Modellierung undPrognose der Kohlenstoffspeicherung in Wäldern auf Grundlage permanenterGroßrauminventuren.
    • (PhD dissertation)
    • Zell, J., (PhD dissertation) 2008. Methoden für die Ermittlung, Modellierung undPrognose der Kohlenstoffspeicherung in Wäldern auf Grundlage permanenterGroßrauminventuren., pp. 152.
    • (2008) , pp. 152
    • Zell, J.1
  • 51
    • 84868663200 scopus 로고    scopus 로고
    • A meta-analysis of terrestrial abovegroundbiomass estimation using LiDAR remote sensing
    • Zolkos, S.G., Goetz, S.J., Dubayah, R., 2013. A meta-analysis of terrestrial abovegroundbiomass estimation using LiDAR remote sensing. Remote Sens. Environ. 128,289-298.
    • (2013) Remote Sens. Environ , vol.128 , pp. 289-298
    • Zolkos, S.G.1    Goetz, S.J.2    Dubayah, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.