메뉴 건너뛰기




Volumn 157, Issue , 2015, Pages 231-242

A neural network based linear ensemble framework for time series forecasting

Author keywords

Artificial neural networks; Combining forecasts; Forecasting accuracy; Time series forecasting; Weights selection

Indexed keywords

FORECASTING; LINEAR NETWORKS; TIME SERIES;

EID: 84924080929     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.01.012     Document Type: Article
Times cited : (108)

References (51)
  • 1
    • 0014629731 scopus 로고
    • The combination of forecasts
    • Bates J.M., Granger C.W.J. The combination of forecasts. Oper. Res. Q. 1969, 20(4):451-468.
    • (1969) Oper. Res. Q. , vol.20 , Issue.4 , pp. 451-468
    • Bates, J.M.1    Granger, C.W.J.2
  • 2
    • 79956363043 scopus 로고    scopus 로고
    • Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
    • Andrawis R.R., Atiya A.F., El-Shishiny H. Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. Int. J. Forecast. 2011, 27(3):672-688.
    • (2011) Int. J. Forecast. , vol.27 , Issue.3 , pp. 672-688
    • Andrawis, R.R.1    Atiya, A.F.2    El-Shishiny, H.3
  • 3
    • 11944258430 scopus 로고    scopus 로고
    • To combine or not to combine. selecting among forecasts and their combinations
    • Hibon M., Evgeniou T. To combine or not to combine. selecting among forecasts and their combinations. Int. J. Forecast. 2005, 21(1):15-24.
    • (2005) Int. J. Forecast. , vol.21 , Issue.1 , pp. 15-24
    • Hibon, M.1    Evgeniou, T.2
  • 4
    • 80053306318 scopus 로고    scopus 로고
    • A novel neural network ensemble architecture for time series forecasting
    • Gheyas I.A., Smith L.S. A novel neural network ensemble architecture for time series forecasting. Neurocomputing 2011, 74(18):3855-3864.
    • (2011) Neurocomputing , vol.74 , Issue.18 , pp. 3855-3864
    • Gheyas, I.A.1    Smith, L.S.2
  • 5
    • 0003962862 scopus 로고    scopus 로고
    • Principles of Forecasting: A Handbook for Researchers and Practitioners
    • Kluwer Academic Publishers, Boston, USA
    • J.S. Armstrong, Principles of Forecasting: A Handbook for Researchers and Practitioners, vol. 30, Kluwer Academic Publishers, Boston, USA, 2001.
    • (2001) , vol.30
    • Armstrong, J.S.1
  • 6
    • 0034288942 scopus 로고    scopus 로고
    • The M3-Competition. results, conclusions and implications
    • Makridakis S., Hibon M. The M3-Competition. results, conclusions and implications. Int. J. Forecast. 2000, 16(4):451-476.
    • (2000) Int. J. Forecast. , vol.16 , Issue.4 , pp. 451-476
    • Makridakis, S.1    Hibon, M.2
  • 8
    • 38949170600 scopus 로고    scopus 로고
    • Simple robust averages of forecasts: some empirical results
    • Jose V.R.R., Winkler R.L. Simple robust averages of forecasts: some empirical results. Int. J. Forecast. 2008, 24(1):163-169.
    • (2008) Int. J. Forecast. , vol.24 , Issue.1 , pp. 163-169
    • Jose, V.R.R.1    Winkler, R.L.2
  • 9
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer J.G., Hyndman R.J. 25 years of time series forecasting. Int. J. Forecast. 2006, 22(3):443-473.
    • (2006) Int. J. Forecast. , vol.22 , Issue.3 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 10
    • 0009829718 scopus 로고    scopus 로고
    • Review of guidelines for the use of combined forecasts
    • De Menezes L.M., W Bunn D., Taylor J.W. Review of guidelines for the use of combined forecasts. Eur. J. Oper. Res. 2000, 120(1):190-204.
    • (2000) Eur. J. Oper. Res. , vol.120 , Issue.1 , pp. 190-204
    • De Menezes, L.M.1    Bunn, W.D.2    Taylor, J.W.3
  • 11
    • 84984442855 scopus 로고
    • Improved methods of combining forecasts
    • Granger C.W.J., Ramanathan R. Improved methods of combining forecasts. J. Forecast. 1984, 3(2):197-204.
    • (1984) J. Forecast. , vol.3 , Issue.2 , pp. 197-204
    • Granger, C.W.J.1    Ramanathan, R.2
  • 12
    • 0041678394 scopus 로고
    • An empirical analysis of the accuracy of SA, ERLS and NRLS combination forecasts
    • Aksu C., Gunter S.I. An empirical analysis of the accuracy of SA, ERLS and NRLS combination forecasts. Int. J. Forecast. 1992, 8(1):27-43.
    • (1992) Int. J. Forecast. , vol.8 , Issue.1 , pp. 27-43
    • Aksu, C.1    Gunter, S.I.2
  • 13
    • 0016497303 scopus 로고
    • Some comments on the combination of forecasts
    • Dickinson J. Some comments on the combination of forecasts. Oper. Res. Q. 1975, 205-210.
    • (1975) Oper. Res. Q. , pp. 205-210
    • Dickinson, J.1
  • 14
    • 0016522307 scopus 로고
    • A Bayesian approach to the linear combination of forecasts
    • Bunn D.W. A Bayesian approach to the linear combination of forecasts. Oper. Res. Q. 1975, 325-329.
    • (1975) Oper. Res. Q. , pp. 325-329
    • Bunn, D.W.1
  • 15
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh A., Vedelsby J. Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 1995, 20:231-238.
    • (1995) Adv. Neural Inf. Process. Syst. , vol.20 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 16
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.-H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137(1):239-263.
    • (2002) Artif. Intell. , vol.137 , Issue.1 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 17
    • 45249128876 scopus 로고
    • Combining forecasts: a review and annotated bibliography
    • Clemen R.T. Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 1989, 5(4):559-583.
    • (1989) Int. J. Forecast. , vol.5 , Issue.4 , pp. 559-583
    • Clemen, R.T.1
  • 18
    • 77952545391 scopus 로고    scopus 로고
    • Meta-learning for time series forecasting and forecast combination
    • Lemke C., Gabrys B. Meta-learning for time series forecasting and forecast combination. Neurocomputing 2010, 73(10):2006-2016.
    • (2010) Neurocomputing , vol.73 , Issue.10 , pp. 2006-2016
    • Lemke, C.1    Gabrys, B.2
  • 19
    • 33744970902 scopus 로고    scopus 로고
    • Model combination in neural-based forecasting
    • Freitas P.S., Rodrigues A.J. Model combination in neural-based forecasting. Eur. J. Oper. Res. 2006, 173(3):801-814.
    • (2006) Eur. J. Oper. Res. , vol.173 , Issue.3 , pp. 801-814
    • Freitas, P.S.1    Rodrigues, A.J.2
  • 20
    • 0141993266 scopus 로고    scopus 로고
    • Recursive estimation in econometrics
    • Pollock D. Recursive estimation in econometrics. Comput. Stat. Data Anal. 2003, 44(1):37-75.
    • (2003) Comput. Stat. Data Anal. , vol.44 , Issue.1 , pp. 37-75
    • Pollock, D.1
  • 21
    • 84974869054 scopus 로고
    • Linear combination of forecasts-a comment
    • French S. Linear combination of forecasts-a comment. J. Oper. Res. Soc. 1981, 32:937-938.
    • (1981) J. Oper. Res. Soc. , vol.32 , pp. 937-938
    • French, S.1
  • 22
    • 0020824169 scopus 로고
    • Averages of forecasts: some empirical results
    • Makridakis S., Winkler R.L. Averages of forecasts: some empirical results. Manag. Sci. 1983, 29(9):987-996.
    • (1983) Manag. Sci. , vol.29 , Issue.9 , pp. 987-996
    • Makridakis, S.1    Winkler, R.L.2
  • 25
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G., Eddy Patuwo B., Y Hu M. Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 1998, 14(1):35-62.
    • (1998) Int. J. Forecast. , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Hu, M.Y.3
  • 26
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 27
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognit. Sci. 1990, 14(2):179-211.
    • (1990) Cognit. Sci. , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 28
    • 84861441613 scopus 로고    scopus 로고
    • The application of an ensemble of boosted Elman networks to time series prediction: a benchmark study
    • Lim C.P., Goh W.Y. The application of an ensemble of boosted Elman networks to time series prediction: a benchmark study. Int. J. Comput. Intell. 2005, 3(2):119-126.
    • (2005) Int. J. Comput. Intell. , vol.3 , Issue.2 , pp. 119-126
    • Lim, C.P.1    Goh, W.Y.2
  • 30
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machines classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machines classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 31
    • 52949087146 scopus 로고    scopus 로고
    • Improving artificial neural networks[U+05F3] performance in seasonal time series forecasting
    • Hamzaçebi C. Improving artificial neural networks[U+05F3] performance in seasonal time series forecasting. Inf. Sci. 2008, 178(23):4550-4559.
    • (2008) Inf. Sci. , vol.178 , Issue.23 , pp. 4550-4559
    • Hamzaçebi, C.1
  • 32
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 33
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by backpropagating errors. Nature 1986, 323(6188):533-536.
    • (1986) Nature , vol.323 , Issue.6188 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 84867668749 scopus 로고    scopus 로고
    • Forecasting strong seasonal time series with artificial neural networks
    • Adhikari R., Agrawal R.K. Forecasting strong seasonal time series with artificial neural networks. J. Sci. Ind. Res. 2012, 71(10):657-666.
    • (2012) J. Sci. Ind. Res. , vol.71 , Issue.10 , pp. 657-666
    • Adhikari, R.1    Agrawal, R.K.2
  • 35
    • 84920258960 scopus 로고    scopus 로고
    • Performance evaluation of weights selection schemes for linear combination of multiple forecasts
    • Adhikari R., Agrawal R.K. Performance evaluation of weights selection schemes for linear combination of multiple forecasts. Artif. Intell. Rev. 2012, 1-20. 10.1007/s10462-012-9361-z.
    • (2012) Artif. Intell. Rev. , pp. 1-20
    • Adhikari, R.1    Agrawal, R.K.2
  • 36
    • 84881246633 scopus 로고    scopus 로고
    • Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration
    • Zhao J., Zhu X., Wang W., Liu Y. Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration. Neurocomputing 2013, 118:215-224.
    • (2013) Neurocomputing , vol.118 , pp. 215-224
    • Zhao, J.1    Zhu, X.2    Wang, W.3    Liu, Y.4
  • 38
    • 33847098185 scopus 로고    scopus 로고
    • Neural Networks: A Classroom Approach
    • India
    • S. Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, India, 2004.
    • (2004) Tata McGraw-Hill Education
    • Kumar, S.1
  • 39
    • 40949125217 scopus 로고    scopus 로고
    • Chaotic time series prediction using knowledge based Greens kernel and least-squares support vector machines
    • IEEE, Montreal, Canada, 2007
    • T. Farooq, A. Guergachi, S. Krishnan, Chaotic time series prediction using knowledge based Greens kernel and least-squares support vector machines, in: IEEE International Conference on Systems, Man and Cybernetics (ISIC), 2007, IEEE, Montreal, Canada, 2007, pp. 373-378.
    • (2007) IEEE International Conference on Systems, Man and Cybernetics (ISIC) , pp. 373-378
    • Farooq, T.1    Guergachi, A.2    Krishnan, S.3
  • 40
    • 84924056535 scopus 로고    scopus 로고
    • Support Vector Machines: Introduction Principles
    • Adaptive Tuning and Prior Knowledge (Ph.D. thesis), University of Paris, France
    • O. Chapelle, Support Vector Machines: Introduction Principles, Adaptive Tuning and Prior Knowledge (Ph.D. thesis), University of Paris, France, 2002.
    • (2002)
    • Chapelle, O.1
  • 41
    • 34548619946 scopus 로고    scopus 로고
    • A neural network ensemble method with jittered training data for time series forecasting
    • Zhang G.P. A neural network ensemble method with jittered training data for time series forecasting. Inf. Sci. 2007, 177(23):5329-5346.
    • (2007) Inf. Sci. , vol.177 , Issue.23 , pp. 5329-5346
    • Zhang, G.P.1
  • 42
    • 0032043525 scopus 로고    scopus 로고
    • The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression
    • Markham I.S., Rakes T.R. The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression. Comput. Oper. Res. 1998, 25(4):251-263.
    • (1998) Comput. Oper. Res. , vol.25 , Issue.4 , pp. 251-263
    • Markham, I.S.1    Rakes, T.R.2
  • 43
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2(2):121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 44
    • 4744365124 scopus 로고    scopus 로고
    • Combination forecasts of output growth in a seven-country data set
    • Stock J.H., Watson M.W. Combination forecasts of output growth in a seven-country data set. J. Forecast. 2004, 23(6):405-430.
    • (2004) J. Forecast. , vol.23 , Issue.6 , pp. 405-430
    • Stock, J.H.1    Watson, M.W.2
  • 45
    • 0004236492 scopus 로고    scopus 로고
    • Matrix computations
    • 3rd edition, The John Hopkins University Press, Baltimore, USA
    • G.H. Golub, C.F. Van Loan, Matrix computations, 3rd edition, vol. 3, The John Hopkins University Press, Baltimore, USA, 2012.
    • (2012) , vol.3
    • Golub, G.H.1    Van Loan, C.F.2
  • 47
    • 0001426268 scopus 로고    scopus 로고
    • Probabilistic analysis of learning in artificial neural networks. the PAC model and its variants
    • Anthony M. Probabilistic analysis of learning in artificial neural networks. the PAC model and its variants. Neural Comput. Surv. 1998, 1:1-60.
    • (1998) Neural Comput. Surv. , vol.1 , pp. 1-60
    • Anthony, M.1
  • 48
    • 0040321375 scopus 로고    scopus 로고
    • Time Series Data Library (TSDL)
    • Available online at url(01-01-13).
    • R.J. Hyndman, Time Series Data Library (TSDL), 2013, Available online at url:(01-01-13). http://robjhyndman.com/TSDL/.
    • (2013)
    • Hyndman, R.J.1
  • 49
    • 85036258669 scopus 로고
    • Distribution of the estimators for autoregressive time series with a unit root
    • Dickey D.A., Fuller W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. stat. Assoc. 1979, 74(366a):427-431.
    • (1979) J. Am. stat. Assoc. , vol.74 , Issue.366 A , pp. 427-431
    • Dickey, D.A.1    Fuller, W.A.2
  • 50
    • 84924040294 scopus 로고    scopus 로고
    • MATLAB Toolbox ARMASA, [Online], url: (12-07-13).
    • Delft Center for Systems and Control, 2013, MATLAB Toolbox ARMASA, [Online], url: (12-07-13). http://www.dcsc.tudelft.nl/Research/Software.
    • (2013)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.