-
1
-
-
0014629731
-
The combination of forecasts
-
Bates J.M., Granger C.W.J. The combination of forecasts. Oper. Res. Q. 1969, 20(4):451-468.
-
(1969)
Oper. Res. Q.
, vol.20
, Issue.4
, pp. 451-468
-
-
Bates, J.M.1
Granger, C.W.J.2
-
2
-
-
79956363043
-
Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
-
Andrawis R.R., Atiya A.F., El-Shishiny H. Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. Int. J. Forecast. 2011, 27(3):672-688.
-
(2011)
Int. J. Forecast.
, vol.27
, Issue.3
, pp. 672-688
-
-
Andrawis, R.R.1
Atiya, A.F.2
El-Shishiny, H.3
-
3
-
-
11944258430
-
To combine or not to combine. selecting among forecasts and their combinations
-
Hibon M., Evgeniou T. To combine or not to combine. selecting among forecasts and their combinations. Int. J. Forecast. 2005, 21(1):15-24.
-
(2005)
Int. J. Forecast.
, vol.21
, Issue.1
, pp. 15-24
-
-
Hibon, M.1
Evgeniou, T.2
-
4
-
-
80053306318
-
A novel neural network ensemble architecture for time series forecasting
-
Gheyas I.A., Smith L.S. A novel neural network ensemble architecture for time series forecasting. Neurocomputing 2011, 74(18):3855-3864.
-
(2011)
Neurocomputing
, vol.74
, Issue.18
, pp. 3855-3864
-
-
Gheyas, I.A.1
Smith, L.S.2
-
5
-
-
0003962862
-
Principles of Forecasting: A Handbook for Researchers and Practitioners
-
Kluwer Academic Publishers, Boston, USA
-
J.S. Armstrong, Principles of Forecasting: A Handbook for Researchers and Practitioners, vol. 30, Kluwer Academic Publishers, Boston, USA, 2001.
-
(2001)
, vol.30
-
-
Armstrong, J.S.1
-
6
-
-
0034288942
-
The M3-Competition. results, conclusions and implications
-
Makridakis S., Hibon M. The M3-Competition. results, conclusions and implications. Int. J. Forecast. 2000, 16(4):451-476.
-
(2000)
Int. J. Forecast.
, vol.16
, Issue.4
, pp. 451-476
-
-
Makridakis, S.1
Hibon, M.2
-
8
-
-
38949170600
-
Simple robust averages of forecasts: some empirical results
-
Jose V.R.R., Winkler R.L. Simple robust averages of forecasts: some empirical results. Int. J. Forecast. 2008, 24(1):163-169.
-
(2008)
Int. J. Forecast.
, vol.24
, Issue.1
, pp. 163-169
-
-
Jose, V.R.R.1
Winkler, R.L.2
-
9
-
-
33745952342
-
25 years of time series forecasting
-
De Gooijer J.G., Hyndman R.J. 25 years of time series forecasting. Int. J. Forecast. 2006, 22(3):443-473.
-
(2006)
Int. J. Forecast.
, vol.22
, Issue.3
, pp. 443-473
-
-
De Gooijer, J.G.1
Hyndman, R.J.2
-
10
-
-
0009829718
-
Review of guidelines for the use of combined forecasts
-
De Menezes L.M., W Bunn D., Taylor J.W. Review of guidelines for the use of combined forecasts. Eur. J. Oper. Res. 2000, 120(1):190-204.
-
(2000)
Eur. J. Oper. Res.
, vol.120
, Issue.1
, pp. 190-204
-
-
De Menezes, L.M.1
Bunn, W.D.2
Taylor, J.W.3
-
11
-
-
84984442855
-
Improved methods of combining forecasts
-
Granger C.W.J., Ramanathan R. Improved methods of combining forecasts. J. Forecast. 1984, 3(2):197-204.
-
(1984)
J. Forecast.
, vol.3
, Issue.2
, pp. 197-204
-
-
Granger, C.W.J.1
Ramanathan, R.2
-
12
-
-
0041678394
-
An empirical analysis of the accuracy of SA, ERLS and NRLS combination forecasts
-
Aksu C., Gunter S.I. An empirical analysis of the accuracy of SA, ERLS and NRLS combination forecasts. Int. J. Forecast. 1992, 8(1):27-43.
-
(1992)
Int. J. Forecast.
, vol.8
, Issue.1
, pp. 27-43
-
-
Aksu, C.1
Gunter, S.I.2
-
13
-
-
0016497303
-
Some comments on the combination of forecasts
-
Dickinson J. Some comments on the combination of forecasts. Oper. Res. Q. 1975, 205-210.
-
(1975)
Oper. Res. Q.
, pp. 205-210
-
-
Dickinson, J.1
-
14
-
-
0016522307
-
A Bayesian approach to the linear combination of forecasts
-
Bunn D.W. A Bayesian approach to the linear combination of forecasts. Oper. Res. Q. 1975, 325-329.
-
(1975)
Oper. Res. Q.
, pp. 325-329
-
-
Bunn, D.W.1
-
15
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
Krogh A., Vedelsby J. Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 1995, 20:231-238.
-
(1995)
Adv. Neural Inf. Process. Syst.
, vol.20
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
16
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou Z.-H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137(1):239-263.
-
(2002)
Artif. Intell.
, vol.137
, Issue.1
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
17
-
-
45249128876
-
Combining forecasts: a review and annotated bibliography
-
Clemen R.T. Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 1989, 5(4):559-583.
-
(1989)
Int. J. Forecast.
, vol.5
, Issue.4
, pp. 559-583
-
-
Clemen, R.T.1
-
18
-
-
77952545391
-
Meta-learning for time series forecasting and forecast combination
-
Lemke C., Gabrys B. Meta-learning for time series forecasting and forecast combination. Neurocomputing 2010, 73(10):2006-2016.
-
(2010)
Neurocomputing
, vol.73
, Issue.10
, pp. 2006-2016
-
-
Lemke, C.1
Gabrys, B.2
-
19
-
-
33744970902
-
Model combination in neural-based forecasting
-
Freitas P.S., Rodrigues A.J. Model combination in neural-based forecasting. Eur. J. Oper. Res. 2006, 173(3):801-814.
-
(2006)
Eur. J. Oper. Res.
, vol.173
, Issue.3
, pp. 801-814
-
-
Freitas, P.S.1
Rodrigues, A.J.2
-
20
-
-
0141993266
-
Recursive estimation in econometrics
-
Pollock D. Recursive estimation in econometrics. Comput. Stat. Data Anal. 2003, 44(1):37-75.
-
(2003)
Comput. Stat. Data Anal.
, vol.44
, Issue.1
, pp. 37-75
-
-
Pollock, D.1
-
21
-
-
84974869054
-
Linear combination of forecasts-a comment
-
French S. Linear combination of forecasts-a comment. J. Oper. Res. Soc. 1981, 32:937-938.
-
(1981)
J. Oper. Res. Soc.
, vol.32
, pp. 937-938
-
-
French, S.1
-
22
-
-
0020824169
-
Averages of forecasts: some empirical results
-
Makridakis S., Winkler R.L. Averages of forecasts: some empirical results. Manag. Sci. 1983, 29(9):987-996.
-
(1983)
Manag. Sci.
, vol.29
, Issue.9
, pp. 987-996
-
-
Makridakis, S.1
Winkler, R.L.2
-
23
-
-
0003410292
-
-
Prentice-Hall, Englewood Cliffs, USA
-
Box G.E.P., Jenkins G.M., Reinsel G.C. Time Series Analysis: Forecasting and Control 1994, Prentice-Hall, Englewood Cliffs, USA.
-
(1994)
Time Series Analysis: Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
Reinsel, G.C.3
-
25
-
-
0003123930
-
Forecasting with artificial neural networks: the state of the art
-
Zhang G., Eddy Patuwo B., Y Hu M. Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 1998, 14(1):35-62.
-
(1998)
Int. J. Forecast.
, vol.14
, Issue.1
, pp. 35-62
-
-
Zhang, G.1
Eddy Patuwo, B.2
Hu, M.Y.3
-
26
-
-
0037243071
-
Time series forecasting using a hybrid ARIMA and neural network model
-
Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
-
(2003)
Neurocomputing
, vol.50
, pp. 159-175
-
-
Zhang, G.P.1
-
27
-
-
26444565569
-
Finding structure in time
-
Elman J.L. Finding structure in time. Cognit. Sci. 1990, 14(2):179-211.
-
(1990)
Cognit. Sci.
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
28
-
-
84861441613
-
The application of an ensemble of boosted Elman networks to time series prediction: a benchmark study
-
Lim C.P., Goh W.Y. The application of an ensemble of boosted Elman networks to time series prediction: a benchmark study. Int. J. Comput. Intell. 2005, 3(2):119-126.
-
(2005)
Int. J. Comput. Intell.
, vol.3
, Issue.2
, pp. 119-126
-
-
Lim, C.P.1
Goh, W.Y.2
-
30
-
-
0032638628
-
Least squares support vector machines classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machines classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
31
-
-
52949087146
-
Improving artificial neural networks[U+05F3] performance in seasonal time series forecasting
-
Hamzaçebi C. Improving artificial neural networks[U+05F3] performance in seasonal time series forecasting. Inf. Sci. 2008, 178(23):4550-4559.
-
(2008)
Inf. Sci.
, vol.178
, Issue.23
, pp. 4550-4559
-
-
Hamzaçebi, C.1
-
32
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
33
-
-
0022471098
-
Learning representations by backpropagating errors
-
Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by backpropagating errors. Nature 1986, 323(6188):533-536.
-
(1986)
Nature
, vol.323
, Issue.6188
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
34
-
-
84867668749
-
Forecasting strong seasonal time series with artificial neural networks
-
Adhikari R., Agrawal R.K. Forecasting strong seasonal time series with artificial neural networks. J. Sci. Ind. Res. 2012, 71(10):657-666.
-
(2012)
J. Sci. Ind. Res.
, vol.71
, Issue.10
, pp. 657-666
-
-
Adhikari, R.1
Agrawal, R.K.2
-
35
-
-
84920258960
-
Performance evaluation of weights selection schemes for linear combination of multiple forecasts
-
Adhikari R., Agrawal R.K. Performance evaluation of weights selection schemes for linear combination of multiple forecasts. Artif. Intell. Rev. 2012, 1-20. 10.1007/s10462-012-9361-z.
-
(2012)
Artif. Intell. Rev.
, pp. 1-20
-
-
Adhikari, R.1
Agrawal, R.K.2
-
36
-
-
84881246633
-
Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration
-
Zhao J., Zhu X., Wang W., Liu Y. Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration. Neurocomputing 2013, 118:215-224.
-
(2013)
Neurocomputing
, vol.118
, pp. 215-224
-
-
Zhao, J.1
Zhu, X.2
Wang, W.3
Liu, Y.4
-
37
-
-
0003396255
-
-
The MathWorks, Natic, MA
-
Demuth H., Beale M., Hagan M. Neural Network Toolbox User[U+05F3]s Guide 2010, The MathWorks, Natic, MA.
-
(2010)
Neural Network Toolbox User[U+05F3]s Guide
-
-
Demuth, H.1
Beale, M.2
Hagan, M.3
-
38
-
-
33847098185
-
Neural Networks: A Classroom Approach
-
India
-
S. Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, India, 2004.
-
(2004)
Tata McGraw-Hill Education
-
-
Kumar, S.1
-
39
-
-
40949125217
-
Chaotic time series prediction using knowledge based Greens kernel and least-squares support vector machines
-
IEEE, Montreal, Canada, 2007
-
T. Farooq, A. Guergachi, S. Krishnan, Chaotic time series prediction using knowledge based Greens kernel and least-squares support vector machines, in: IEEE International Conference on Systems, Man and Cybernetics (ISIC), 2007, IEEE, Montreal, Canada, 2007, pp. 373-378.
-
(2007)
IEEE International Conference on Systems, Man and Cybernetics (ISIC)
, pp. 373-378
-
-
Farooq, T.1
Guergachi, A.2
Krishnan, S.3
-
40
-
-
84924056535
-
Support Vector Machines: Introduction Principles
-
Adaptive Tuning and Prior Knowledge (Ph.D. thesis), University of Paris, France
-
O. Chapelle, Support Vector Machines: Introduction Principles, Adaptive Tuning and Prior Knowledge (Ph.D. thesis), University of Paris, France, 2002.
-
(2002)
-
-
Chapelle, O.1
-
41
-
-
34548619946
-
A neural network ensemble method with jittered training data for time series forecasting
-
Zhang G.P. A neural network ensemble method with jittered training data for time series forecasting. Inf. Sci. 2007, 177(23):5329-5346.
-
(2007)
Inf. Sci.
, vol.177
, Issue.23
, pp. 5329-5346
-
-
Zhang, G.P.1
-
42
-
-
0032043525
-
The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression
-
Markham I.S., Rakes T.R. The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression. Comput. Oper. Res. 1998, 25(4):251-263.
-
(1998)
Comput. Oper. Res.
, vol.25
, Issue.4
, pp. 251-263
-
-
Markham, I.S.1
Rakes, T.R.2
-
43
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2(2):121-167.
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.1
-
44
-
-
4744365124
-
Combination forecasts of output growth in a seven-country data set
-
Stock J.H., Watson M.W. Combination forecasts of output growth in a seven-country data set. J. Forecast. 2004, 23(6):405-430.
-
(2004)
J. Forecast.
, vol.23
, Issue.6
, pp. 405-430
-
-
Stock, J.H.1
Watson, M.W.2
-
45
-
-
0004236492
-
Matrix computations
-
3rd edition, The John Hopkins University Press, Baltimore, USA
-
G.H. Golub, C.F. Van Loan, Matrix computations, 3rd edition, vol. 3, The John Hopkins University Press, Baltimore, USA, 2012.
-
(2012)
, vol.3
-
-
Golub, G.H.1
Van Loan, C.F.2
-
47
-
-
0001426268
-
Probabilistic analysis of learning in artificial neural networks. the PAC model and its variants
-
Anthony M. Probabilistic analysis of learning in artificial neural networks. the PAC model and its variants. Neural Comput. Surv. 1998, 1:1-60.
-
(1998)
Neural Comput. Surv.
, vol.1
, pp. 1-60
-
-
Anthony, M.1
-
48
-
-
0040321375
-
Time Series Data Library (TSDL)
-
Available online at url(01-01-13).
-
R.J. Hyndman, Time Series Data Library (TSDL), 2013, Available online at url:(01-01-13). http://robjhyndman.com/TSDL/.
-
(2013)
-
-
Hyndman, R.J.1
-
49
-
-
85036258669
-
Distribution of the estimators for autoregressive time series with a unit root
-
Dickey D.A., Fuller W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. stat. Assoc. 1979, 74(366a):427-431.
-
(1979)
J. Am. stat. Assoc.
, vol.74
, Issue.366 A
, pp. 427-431
-
-
Dickey, D.A.1
Fuller, W.A.2
-
50
-
-
84924040294
-
-
MATLAB Toolbox ARMASA, [Online], url: (12-07-13).
-
Delft Center for Systems and Control, 2013, MATLAB Toolbox ARMASA, [Online], url: (12-07-13). http://www.dcsc.tudelft.nl/Research/Software.
-
(2013)
-
-
-
51
-
-
85102332811
-
-
John Wiley & Sons, Hoboken, New Jersey
-
Hollander M., Wolfe D.A., Chicken E. Nonparametric Statistical Methods 2013, vol. 751. John Wiley & Sons, Hoboken, New Jersey.
-
(2013)
Nonparametric Statistical Methods
, vol.751
-
-
Hollander, M.1
Wolfe, D.A.2
Chicken, E.3
|