메뉴 건너뛰기




Volumn 178, Issue 23, 2008, Pages 4550-4559

Improving artificial neural networks' performance in seasonal time series forecasting

Author keywords

Artificial neural networks; Forecasting; Holt Winters; Seasonal Box Jenkins model; Seasonal time series

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; FORECASTING; MODEL STRUCTURES; TIME SERIES ANALYSIS; VEGETATION;

EID: 52949087146     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2008.07.024     Document Type: Article
Times cited : (216)

References (42)
  • 1
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • Adya M., and Collopy F. How effective are neural networks at forecasting and prediction? A review and evaluation. Journal of Forecasting 17 (1998) 481-495
    • (1998) Journal of Forecasting , vol.17 , pp. 481-495
    • Adya, M.1    Collopy, F.2
  • 2
    • 0142239490 scopus 로고    scopus 로고
    • Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods
    • Alon I., Qi M., and Sadowski R.J. Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods. Journal of Retailing and Consumer Services 8 3 (2001) 147-156
    • (2001) Journal of Retailing and Consumer Services , vol.8 , Issue.3 , pp. 147-156
    • Alon, I.1    Qi, M.2    Sadowski, R.J.3
  • 3
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • Barbounis T.G., and Teocharis J.B. Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences 177 (2007) 5775-5797
    • (2007) Information Sciences , vol.177 , pp. 5775-5797
    • Barbounis, T.G.1    Teocharis, J.B.2
  • 7
    • 33947151102 scopus 로고    scopus 로고
    • Wind speed forecasting in the South Coast of Oaxaca, Mexico
    • Cadenas E., and Rivera W. Wind speed forecasting in the South Coast of Oaxaca, Mexico. Renewable Energy 32 (2007) 2116-2128
    • (2007) Renewable Energy , vol.32 , pp. 2116-2128
    • Cadenas, E.1    Rivera, W.2
  • 9
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko G. Approximation by superposition of a sigmoidal function. Mathematical Control Signal Systems 2 (1989) 303-314
    • (1989) Mathematical Control Signal Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 33947690705 scopus 로고    scopus 로고
    • Evaluating and forecasting banking crises through neural network models: an application for Turkish banking sector
    • Çelik A.E., and Karatepe Y. Evaluating and forecasting banking crises through neural network models: an application for Turkish banking sector. Expert Systems with Applications 33 (2007) 809-815
    • (2007) Expert Systems with Applications , vol.33 , pp. 809-815
    • Çelik, A.E.1    Karatepe, Y.2
  • 12
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: a comparative study using the airline data
    • Faraway J., and Chatfield C. Time series forecasting with neural networks: a comparative study using the airline data. Applied Statistics 47 (1998) 231-250
    • (1998) Applied Statistics , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 13
    • 0142239491 scopus 로고    scopus 로고
    • Recognizing changing seasonal patterns using artificial neural networks
    • Franses P.H., and Draisma G. Recognizing changing seasonal patterns using artificial neural networks. Journal of Econometrics 81 (1997) 273-280
    • (1997) Journal of Econometrics , vol.81 , pp. 273-280
    • Franses, P.H.1    Draisma, G.2
  • 14
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183-192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 15
    • 33845252907 scopus 로고    scopus 로고
    • Forecasting of Turkey's net electricity energy consumption on sectoral bases
    • Hamzaçebi C. Forecasting of Turkey's net electricity energy consumption on sectoral bases. Energy Policy 35 3 (2007) 2009-2016
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 2009-2016
    • Hamzaçebi, C.1
  • 16
    • 56349131204 scopus 로고    scopus 로고
    • Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting
    • 10.1016/j.eswa.2008.02.042
    • Hamzaçebi C., Akay D., and Kutay F. Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Systems with Applications (2008) 10.1016/j.eswa.2008.02.042
    • (2008) Expert Systems with Applications
    • Hamzaçebi, C.1    Akay, D.2    Kutay, F.3
  • 17
    • 0000860595 scopus 로고    scopus 로고
    • Neural networks models for time series forecasts
    • Hill T., O'Connor M., and Remus W. Neural networks models for time series forecasts. Management Sciences 42 7 (1996) 1082-1092
    • (1996) Management Sciences , vol.42 , Issue.7 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 18
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feed-forward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and econometric time series
    • Kaastra I., and Boyd M. Designing a neural network for forecasting financial and econometric time series. Neurocomputing 10 (1996) 215-236
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 20
    • 52949105481 scopus 로고    scopus 로고
    • Methods for multi-step time series forecasting with neural networks
    • Zhang G.P. (Ed), Information Science Publishing, Hershey, PA
    • Kline D.M. Methods for multi-step time series forecasting with neural networks. In: Zhang G.P. (Ed). Neural Networks for Business Forecasting (2004), Information Science Publishing, Hershey, PA 226-250
    • (2004) Neural Networks for Business Forecasting , pp. 226-250
    • Kline, D.M.1
  • 21
    • 79751535866 scopus 로고
    • Time series forecasting using neural networks
    • Kolarik T., and Rodorfer G. Time series forecasting using neural networks. APL Quote Quad 25 1 (1994) 86-94
    • (1994) APL Quote Quad , vol.25 , Issue.1 , pp. 86-94
    • Kolarik, T.1    Rodorfer, G.2
  • 24
    • 0029482466 scopus 로고
    • Forecasting international airline passenger traffic using neural networks
    • Nam K., and Schaefer T. Forecasting international airline passenger traffic using neural networks. Logistic and Transportation 31 3 (1995) 239-251
    • (1995) Logistic and Transportation , vol.31 , Issue.3 , pp. 239-251
    • Nam, K.1    Schaefer, T.2
  • 25
    • 0000902316 scopus 로고    scopus 로고
    • Time series forecasting using neural networks: should the data be deseasonalized first?
    • Nelson M., Hill T., Remus W., and O'Connor M. Time series forecasting using neural networks: should the data be deseasonalized first?. Journal of Forecasting 18 (1999) 359-367
    • (1999) Journal of Forecasting , vol.18 , pp. 359-367
    • Nelson, M.1    Hill, T.2    Remus, W.3    O'Connor, M.4
  • 26
    • 0028055346 scopus 로고    scopus 로고
    • M. Nelson, T. Hill, W. Remus, M. O'Connor, Can neural networks applied to time series forecasting learn seasonal patterns: an empirical investigation, in: Proceedings of the 27th Annual Hawaii International Conference on System Sciences, vol. 3, 1994, pp. 649-655.
    • M. Nelson, T. Hill, W. Remus, M. O'Connor, Can neural networks applied to time series forecasting learn seasonal patterns: an empirical investigation, in: Proceedings of the 27th Annual Hawaii International Conference on System Sciences, vol. 3, 1994, pp. 649-655.
  • 27
    • 27744588529 scopus 로고    scopus 로고
    • An improved neural network model in forecasting arrivals
    • Pai P., and Hong W. An improved neural network model in forecasting arrivals. Annals of Tourism Research 32 4 (2005) 1138-1141
    • (2005) Annals of Tourism Research , vol.32 , Issue.4 , pp. 1138-1141
    • Pai, P.1    Hong, W.2
  • 28
    • 33745933319 scopus 로고    scopus 로고
    • Designing an artificial neural network for forecasting tourism time series
    • Palmer A., Montano J.J., and Sese A. Designing an artificial neural network for forecasting tourism time series. Tourism Management 27 (2006) 781-790
    • (2006) Tourism Management , vol.27 , pp. 781-790
    • Palmer, A.1    Montano, J.J.2    Sese, A.3
  • 29
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaii stream using rating curves and neural networks
    • Sahoo G.B., and Ray C. Flow forecasting for a Hawaii stream using rating curves and neural networks. Journal of Hydrology 317 (2006) 63-80
    • (2006) Journal of Hydrology , vol.317 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 30
    • 0004393134 scopus 로고
    • Connectionist approach to time series prediction: an empirical test
    • Sharda R., and Patil R.B. Connectionist approach to time series prediction: an empirical test. Journal of Intelligent Manufacturing 3 (1992) 317-323
    • (1992) Journal of Intelligent Manufacturing , vol.3 , pp. 317-323
    • Sharda, R.1    Patil, R.B.2
  • 31
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh P., and Deo M.C. Suitability of different neural networks in daily flow forecasting. Applied Soft Computing 7 (2007) 968-978
    • (2007) Applied Soft Computing , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.C.2
  • 32
    • 35648929481 scopus 로고    scopus 로고
    • Forecasting based on sectoral energy consumption of GHGS in Turkey and mitigation policies
    • Sözen A., Gülseven Z., and Arcaklioǧlu E. Forecasting based on sectoral energy consumption of GHGS in Turkey and mitigation policies. Energy Policy 35 (2007) 6491-6505
    • (2007) Energy Policy , vol.35 , pp. 6491-6505
    • Sözen, A.1    Gülseven, Z.2    Arcaklioǧlu, E.3
  • 33
    • 0000393458 scopus 로고
    • Feedforward neural nets as models for time series forecasting
    • Tang Z., and Fishwick P.A. Feedforward neural nets as models for time series forecasting. ORSA Journal on Computing 5 4 (1993) 374-385
    • (1993) ORSA Journal on Computing , vol.5 , Issue.4 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 34
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs Box-Jenkins methodology
    • Tang Z., Almeida C., and Fishwick P.A. Time series forecasting using neural networks vs Box-Jenkins methodology. Simulation 57 5 (1991) 303-310
    • (1991) Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    Almeida, C.2    Fishwick, P.A.3
  • 36
    • 0029749074 scopus 로고    scopus 로고
    • Stock market trend prediction using ARIMA-based neural networks
    • Wang J.H., and Leu J.Y. Stock market trend prediction using ARIMA-based neural networks. IEEE International Conference on Neural Networks 4 6 (1996) 2160-2165
    • (1996) IEEE International Conference on Neural Networks , vol.4 , Issue.6 , pp. 2160-2165
    • Wang, J.H.1    Leu, J.Y.2
  • 37
    • 33644976108 scopus 로고    scopus 로고
    • Forecasting innovation performance via neural networks - a case of Taiwanese manufacturing industry
    • Wang T., and Chien S. Forecasting innovation performance via neural networks - a case of Taiwanese manufacturing industry. Technovation 26 (2006) 635-643
    • (2006) Technovation , vol.26 , pp. 635-643
    • Wang, T.1    Chien, S.2
  • 38
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang G., and Qi M. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 160 (2005) 501-514
    • (2005) European Journal of Operational Research , vol.160 , pp. 501-514
    • Zhang, G.1    Qi, M.2
  • 39
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (2003) 159-175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 40
  • 41
    • 84972817918 scopus 로고
    • Time series analysis and prediction by neural networks
    • Zhang X. Time series analysis and prediction by neural networks. Optimization Methods and Software 4 (1994) 151-170
    • (1994) Optimization Methods and Software , vol.4 , pp. 151-170
    • Zhang, X.1
  • 42
    • 34548619946 scopus 로고    scopus 로고
    • A neural network ensemble method with jittered training data for time series forecasting
    • Zhang G.P. A neural network ensemble method with jittered training data for time series forecasting. Information Sciences 177 (2007) 5329-5346
    • (2007) Information Sciences , vol.177 , pp. 5329-5346
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.