메뉴 건너뛰기




Volumn 118, Issue , 2013, Pages 215-224

Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration

Author keywords

EKF; Elman network; GPU; Industrial data; Time series prediction

Indexed keywords

EKF; ELMAN NETWORK; GPU; INDUSTRIAL DATUM; TIME SERIES PREDICTION;

EID: 84881246633     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.02.031     Document Type: Article
Times cited : (31)

References (37)
  • 1
    • 34247329084 scopus 로고    scopus 로고
    • Ridge regression leaning in ESN for chaotic time series prediction
    • Shi Z.W., Han M. Ridge regression leaning in ESN for chaotic time series prediction. Control Decision 2007, 22:258-267.
    • (2007) Control Decision , vol.22 , pp. 258-267
    • Shi, Z.W.1    Han, M.2
  • 2
    • 34248650742 scopus 로고    scopus 로고
    • A hybrid neurogenetic approach for stock forecasting
    • Kwon Y.K., Moon B.R. A hybrid neurogenetic approach for stock forecasting. IEEE Trans. Neural Networks 2007, 18:851-864.
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 851-864
    • Kwon, Y.K.1    Moon, B.R.2
  • 3
    • 60149107687 scopus 로고    scopus 로고
    • Applying wavelets to short-term load forecasting using pso-based neural networks
    • Bashir Z.A. Applying wavelets to short-term load forecasting using pso-based neural networks. IEEE Trans. Power Syst. 2009, 24:20-27.
    • (2009) IEEE Trans. Power Syst. , vol.24 , pp. 20-27
    • Bashir, Z.A.1
  • 4
    • 56549097547 scopus 로고    scopus 로고
    • Multistage RBF neural network ensemble learning for exchange rates forecasting
    • Yu L., Lai K.K., Wang S.Y. Multistage RBF neural network ensemble learning for exchange rates forecasting. Neurocomputing 2008, 71:3295-3302.
    • (2008) Neurocomputing , vol.71 , pp. 3295-3302
    • Yu, L.1    Lai, K.K.2    Wang, S.Y.3
  • 5
    • 84862788716 scopus 로고    scopus 로고
    • Prediction for noisy nonlinear time series by echo state network based on dual estimation
    • Sheng C.Y., Zhao J., Liu Y., Wang W. Prediction for noisy nonlinear time series by echo state network based on dual estimation. Neurocomputing 2012, 82:186-195.
    • (2012) Neurocomputing , vol.82 , pp. 186-195
    • Sheng, C.Y.1    Zhao, J.2    Liu, Y.3    Wang, W.4
  • 7
    • 55949129099 scopus 로고    scopus 로고
    • Convergence of BP algorithm for product unit neural networks with exponential weights
    • Zhang C., Wu W., Chen X.H., Xiong Y. Convergence of BP algorithm for product unit neural networks with exponential weights. Neurocomputing 2008, 72:513-520.
    • (2008) Neurocomputing , vol.72 , pp. 513-520
    • Zhang, C.1    Wu, W.2    Chen, X.H.3    Xiong, Y.4
  • 8
    • 84881249594 scopus 로고    scopus 로고
    • Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and "Echo State Network" approach, Technical Report GMD Report 159, German National Research Center for Information Technology
    • H. Jaeger, Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and "Echo State Network" approach, Technical Report GMD Report 159, German National Research Center for Information Technology (2002).
    • (2002)
    • Jaeger, H.1
  • 9
    • 58749115999 scopus 로고    scopus 로고
    • Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting
    • Sedki A., Ouazar D., Mazoudi E.E. Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting. Expert Syst. Appl. 2009, 36:4523-4527.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4523-4527
    • Sedki, A.1    Ouazar, D.2    Mazoudi, E.E.3
  • 10
    • 77649193958 scopus 로고    scopus 로고
    • Multivariate time series online predictor with Kalman filter trained reservoir
    • Wang Y.N., Han M. Multivariate time series online predictor with Kalman filter trained reservoir. Acta Autom. Sin. 2010, 36:169-173.
    • (2010) Acta Autom. Sin. , vol.36 , pp. 169-173
    • Wang, Y.N.1    Han, M.2
  • 11
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • Lukoševičius M., Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3:127-149.
    • (2009) Comput. Sci. Rev. , vol.3 , pp. 127-149
    • Lukoševičius, M.1    Jaeger, H.2
  • 12
    • 34249867443 scopus 로고    scopus 로고
    • Automatic speech recognition using a predictive echo state network classifier
    • Skowronski M.D., Harris J.G. Automatic speech recognition using a predictive echo state network classifier. Neural Networks 2007, 20:414-423.
    • (2007) Neural Networks , vol.20 , pp. 414-423
    • Skowronski, M.D.1    Harris, J.G.2
  • 13
    • 84876926544 scopus 로고    scopus 로고
    • Chaotic time series prediction based on a novel robust echo state network
    • Li D., Han M., Wang J. Chaotic time series prediction based on a novel robust echo state network. IEEE Trans. Neural Networks Learn. Syst. 2012, 23:787-799.
    • (2012) IEEE Trans. Neural Networks Learn. Syst. , vol.23 , pp. 787-799
    • Li, D.1    Han, M.2    Wang, J.3
  • 14
    • 12444282671 scopus 로고    scopus 로고
    • Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error
    • Yang H., Ni J. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error,. Int. J. Mach. Tools Manuf. 2005, 45:455-465.
    • (2005) Int. J. Mach. Tools Manuf. , vol.45 , pp. 455-465
    • Yang, H.1    Ni, J.2
  • 15
    • 76749091461 scopus 로고    scopus 로고
    • Recursive Bayesian recurrent neural networks for time-series modeling
    • Mirikitani D.T., Nikolaev N. Recursive Bayesian recurrent neural networks for time-series modeling. IEEE Trans. Neural Networks 2010, 21:262-274.
    • (2010) IEEE Trans. Neural Networks , vol.21 , pp. 262-274
    • Mirikitani, D.T.1    Nikolaev, N.2
  • 16
    • 12144260517 scopus 로고    scopus 로고
    • Autonomous leaning algorithm for fully connected recurrent networks
    • Leclercq E., Drucux F., Lefebvre D., Zerkaoui S. Autonomous leaning algorithm for fully connected recurrent networks. Neurocomputing 2005, 63:25-44.
    • (2005) Neurocomputing , vol.63 , pp. 25-44
    • Leclercq, E.1    Drucux, F.2    Lefebvre, D.3    Zerkaoui, S.4
  • 17
    • 17644367514 scopus 로고    scopus 로고
    • Kalman filter-trained recurrent neural equalizers for time-varying channels
    • Choi J., Lima A.C., Haykin S. Kalman filter-trained recurrent neural equalizers for time-varying channels. IEEE Trans. Commun. 2005, 53:472-480.
    • (2005) IEEE Trans. Commun. , vol.53 , pp. 472-480
    • Choi, J.1    Lima, A.C.2    Haykin, S.3
  • 21
    • 79953806698 scopus 로고    scopus 로고
    • Convergence study in extended Kalman filter-based training of recurrent neural networks
    • Wang X.Y., Huang Y. Convergence study in extended Kalman filter-based training of recurrent neural networks. IEEE Trans. Neural Networks 2011, 22:588-600.
    • (2011) IEEE Trans. Neural Networks , vol.22 , pp. 588-600
    • Wang, X.Y.1    Huang, Y.2
  • 22
    • 0000647608 scopus 로고    scopus 로고
    • Extended Kalman filter-based pruning method for recurrent neural networks
    • Sum J., Chan L., Leung C., Young G. Extended Kalman filter-based pruning method for recurrent neural networks,. Neural Comput. 1998, 10:1481-1506.
    • (1998) Neural Comput. , vol.10 , pp. 1481-1506
    • Sum, J.1    Chan, L.2    Leung, C.3    Young, G.4
  • 24
    • 80051584618 scopus 로고    scopus 로고
    • GPU-accelerated and parallelized ELM ensembles for large-scale regression
    • Heeswijk M.V., Miche Y., Oja E., Lendasse A. GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing 2011, 74:2430-2437.
    • (2011) Neurocomputing , vol.74 , pp. 2430-2437
    • Heeswijk, M.V.1    Miche, Y.2    Oja, E.3    Lendasse, A.4
  • 25
    • 77953127720 scopus 로고    scopus 로고
    • Parallel implementation of artificial neural network training for speech recognition
    • Scanzio S., Cumani S., Gemello R., Mana F., Laface P. Parallel implementation of artificial neural network training for speech recognition. Pattern Recognition Lett. 2010, 31:1302-1309.
    • (2010) Pattern Recognition Lett. , vol.31 , pp. 1302-1309
    • Scanzio, S.1    Cumani, S.2    Gemello, R.3    Mana, F.4    Laface, P.5
  • 26
    • 84881260999 scopus 로고    scopus 로고
    • NVIDIA, NVIDIA CUDA compute unified device architecture programming guide, V. 1.0.
    • NVIDIA, NVIDIA CUDA compute unified device architecture programming guide, V. 1.0 (2008).
    • (2008)
  • 29
    • 43649086353 scopus 로고    scopus 로고
    • Identification and control nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network
    • Hong W.G., Feng Q., Yan C.L., Wen L.D., Lu W. Identification and control nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network. Nonlinear Anal. Real World Appl. 2008, 9:1345-1360.
    • (2008) Nonlinear Anal. Real World Appl. , vol.9 , pp. 1345-1360
    • Hong, W.G.1    Feng, Q.2    Yan, C.L.3    Wen, L.D.4    Lu, W.5
  • 30
    • 84979085873 scopus 로고    scopus 로고
    • Nonlinear stable adaptive control based upon Elman networks
    • Li X., Chen Z.Q., Yuan Z.Z. Nonlinear stable adaptive control based upon Elman networks. Appl. Math. J. Chin. Univ. Ser. B 2000, 15:332-340.
    • (2000) Appl. Math. J. Chin. Univ. Ser. B , vol.15 , pp. 332-340
    • Li, X.1    Chen, Z.Q.2    Yuan, Z.Z.3
  • 31
    • 56549089658 scopus 로고    scopus 로고
    • Modeling word perception using the Elman network
    • Liou C.Y., Huang J.C., Yang W.C. Modeling word perception using the Elman network. Neurocomputing 2008, 71:3150-3157.
    • (2008) Neurocomputing , vol.71 , pp. 3150-3157
    • Liou, C.Y.1    Huang, J.C.2    Yang, W.C.3
  • 32
    • 20144368400 scopus 로고    scopus 로고
    • Reliability-based approach to the inverse kinematics solution of robots using Elman's networks
    • Köker R. Reliability-based approach to the inverse kinematics solution of robots using Elman's networks. Eng. Appl. Artif. Intell. 2005, 18:685-693.
    • (2005) Eng. Appl. Artif. Intell. , vol.18 , pp. 685-693
    • Köker, R.1
  • 33
    • 44849137198 scopus 로고    scopus 로고
    • NVIDIA Tesla: a unified graphics and computing architecture
    • Lindholm E., Nickolls J., Oberman S., Montrym J. NVIDIA Tesla: a unified graphics and computing architecture. IEEE Micro 2008, 28:39-55.
    • (2008) IEEE Micro , vol.28 , pp. 39-55
    • Lindholm, E.1    Nickolls, J.2    Oberman, S.3    Montrym, J.4
  • 35
    • 64849117504 scopus 로고    scopus 로고
    • Application of least squares support vector machine for regression to reliability analysis
    • Guo Z.W., Bai G.C. Application of least squares support vector machine for regression to reliability analysis. Chin. J. Aeronaut. 2009, 22:160-166.
    • (2009) Chin. J. Aeronaut. , vol.22 , pp. 160-166
    • Guo, Z.W.1    Bai, G.C.2
  • 36
    • 79952188587 scopus 로고    scopus 로고
    • Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements
    • Liang J.L., Wang Z.D., Liu X.H. Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Trans. Neural Networks 2011, 22:486-496.
    • (2011) IEEE Trans. Neural Networks , vol.22 , pp. 486-496
    • Liang, J.L.1    Wang, Z.D.2    Liu, X.H.3
  • 37
    • 73949136715 scopus 로고    scopus 로고
    • Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays
    • Wang Z.D., Wang Y., Liu Y.R. Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays. IEEE Trans. Neural Networks 2010, 21:11-25.
    • (2010) IEEE Trans. Neural Networks , vol.21 , pp. 11-25
    • Wang, Z.D.1    Wang, Y.2    Liu, Y.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.