-
3
-
-
0000557133
-
Holt-winters forecasting: Some practical issues
-
Chatfield C & Yar M, Holt-winters forecasting: some practical issues, J The Statistician 37 (1988) 129-140.
-
(1988)
J the Statistician
, vol.37
, pp. 129-140
-
-
Chatfield, C.1
Yar, M.2
-
5
-
-
57849133837
-
Dynamic least square support vector machine
-
Institute of Electrical and Electronics, Dalian
-
Fan Y, Li P & Song Z, Dynamic least square support vector machine, Proc IEEE 6th World Congress on Intelligent Control and Automation (Institute of Electrical and Electronics, Dalian) 2006, 4886-4889.
-
(2006)
Proc IEEE 6th World Congress On Intelligent Control and Automation
, pp. 4886-4889
-
-
Fan, Y.1
Li, P.2
Song, Z.3
-
6
-
-
79959415599
-
Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines
-
Barcelona, Spain, 18-23 July
-
Cortez P, Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines, in Int Joint Conf Neural Netw (Barcelona, Spain) 18-23 July 2010, 1-8.
-
(2010)
Int Joint Conf Neural Netw
, pp. 1-8
-
-
Cortez, P.1
-
7
-
-
13844319414
-
Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program
-
Miller D M & Williams D, Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program, J Forecasting 20 (2004) 529-549.
-
(2004)
J Forecasting
, vol.20
, pp. 529-549
-
-
Miller, D.M.1
Williams, D.2
-
8
-
-
0030560209
-
Is seasonal adjustment a linear or nonlinear data filtering process
-
Ghysels E, Granger C W & Siklos P L, Is seasonal adjustment a linear or nonlinear data filtering process, J Bus Econ Statist 14 (1996) 374-386.
-
(1996)
J Bus Econ Statist
, vol.14
, pp. 374-386
-
-
Ghysels, E.1
Granger, C.W.2
Siklos, P.L.3
-
9
-
-
0037243071
-
Time series forecasting using a hybrid ARIMA and neural network model
-
Zhang, G P, Time series forecasting using a hybrid ARIMA and neural network model, J Neurocomputing 50 (2003) 159-175.
-
(2003)
J Neurocomputing
, vol.50
, pp. 159-175
-
-
Zhang, G.P.1
-
10
-
-
0003123930
-
Forecasting with artificial neural networks: The state of the art
-
Zhang G, Patuwo B E & Hu M Y, Forecasting with artificial neural networks: The state of the art, J Forecasting 14 (1998) 35-62.
-
(1998)
J Forecasting
, vol.14
, pp. 35-62
-
-
Zhang, G.1
Patuwo, B.E.2
Hu, M.Y.3
-
12
-
-
0000860595
-
Neural networks models for time series forecasts
-
Hill T, O'Connor M & Remus W, Neural networks models for time series forecasts, J Manage Sci 42 (1996) 1082-1092
-
(1996)
J Manage Sci
, vol.42
, pp. 1082-1092
-
-
Hill, T.1
O'Connor, M.2
Remus, W.3
-
13
-
-
4344591889
-
Neural network forecasting for seasonal and trend time series
-
Zhang G & Qi M, Neural network forecasting for seasonal and trend time series, Eur J Oper Res 160 (2005) 501-514.
-
(2005)
Eur J Oper Res
, vol.160
, pp. 501-514
-
-
Zhang, G.1
Qi, M.2
-
14
-
-
0142239490
-
Forecasting Aggregate Retail Sales: A Comparison of Artificial Neural Networks and Traditional Methods
-
Alon I, Qi M & Sadowski R J, Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods, J Retailing and Consumer Services8 (2001) 147-156.
-
(2001)
J Retailing and Consumer Services8
, pp. 147-156
-
-
Alon, I.1
Qi, M.2
Sadowski, R.J.3
-
15
-
-
0036140323
-
Combining neural network model with seasonal time series ARIMA model
-
Tseng F M, Yu H C & Tzeng G H, Combining neural network model with seasonal time series ARIMA model, J Technol Forecast Soc Change 69 (2002) 71-87.
-
(2002)
J Technol Forecast Soc Change
, vol.69
, pp. 71-87
-
-
Tseng, F.M.1
Yu, H.C.2
Tzeng, G.H.3
-
17
-
-
0742268991
-
Support vector machine with adaptive parameters in financial time series forecasting
-
Cao L & Tay E H, Support vector machine with adaptive parameters in financial time series forecasting, J IEEE Trans Neural Netw 14 (2003) 1506-1508.
-
(2003)
J IEEE Trans Neural Netw
, vol.14
, pp. 1506-1508
-
-
Cao, L.1
Tay, E.H.2
-
19
-
-
51549113945
-
Seasonal time series forecasting: A comparative study of ARIMA and ANN models
-
Kihoro J M, Otieno R O & Wafula C, Seasonal time series forecasting: A comparative study of ARIMA and ANN models, African J Sci and Technol 5 (2004) 41-49.
-
(2004)
African J Sci and Technol
, vol.5
, pp. 41-49
-
-
Kihoro, J.M.1
Otieno, R.O.2
Wafula, C.3
-
20
-
-
0039988139
-
Time series forecasting with neural networks: A comparative study using the airline data
-
Faraway J & Chatfield C, Time series forecasting with neural networks: A comparative study using the airline data, J Appl Statist 47 (1998) 231-250.
-
(1998)
J Appl Statist
, vol.47
, pp. 231-250
-
-
Faraway, J.1
Chatfield, C.2
-
21
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart D E, Hinton G E & Williams R J, Learning representations by back-propagating errors, J Nature 323 (1986) 533-536.
-
(1986)
J Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
22
-
-
0028543366
-
Training feedforward networks with the marquardt algorithm
-
Hagan M & Menhaj M, Training feedforward networks with the marquardt algorithm, J IEEE Trans Neural Netw 5 (1994) 989-993.
-
(1994)
J IEEE Trans Neural Netw
, vol.5
, pp. 989-993
-
-
Hagan, M.1
Menhaj, M.2
-
23
-
-
84943274699
-
A direct adaptive method for faster backpropagation learning: The rprop algorithm
-
San Francisco, USA
-
Reidmiller M & Braun H, A direct adaptive method for faster backpropagation learning: The rprop algorithm, in IEEE Int Conf Neural Netw (San Francisco, USA) 1993, 586-591.
-
(1993)
IEEE Int Conf Neural Netw
, pp. 586-591
-
-
Reidmiller, M.1
Braun, H.2
-
24
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Moller M F, A scaled conjugate gradient algorithm for fast supervised learning, J Neural Networks 6 (1993) 525-533.
-
(1993)
J Neural Networks
, vol.6
, pp. 525-533
-
-
Moller, M.F.1
-
25
-
-
0001024110
-
One step secant conjugate gradient
-
Battiti R, One step secant conjugate gradient, J Neural Comput 4 (1992) 141-166.
-
(1992)
J Neural Comput
, vol.4
, pp. 141-166
-
-
Battiti, R.1
-
28
-
-
84872173837
-
Effectiveness of PSO Based Neural Network for Seasonal Time Series Forecasting
-
(Siddaganga Institute of Technology Tumkur), 14-16 December
-
Adhikari R & Agrawal R K, Effectiveness of PSO Based Neural Network for Seasonal Time Series Forecasting, in Indian Int Conf on Artificial Intel (IICAI) (Siddaganga Institute of Technology Tumkur) 14-16 December 2006, 232-244.
-
(2006)
Indian Int Conf On Artificial Intel (IICAI)
, pp. 232-244
-
-
Adhikari, R.1
Agrawal, R.K.2
-
29
-
-
0037475094
-
The particle swarm optimization algorithm: Convergence analysis and parameter selection
-
Trelea I, The particle swarm optimization algorithm: convergence analysis and parameter selection, J Inf Process Lett 85 (2003) 317-325.
-
(2003)
J Inf Process Lett
, vol.85
, pp. 317-325
-
-
Trelea, I.1
-
31
-
-
84863304598
-
-
R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria
-
R Development Core Team, R: A Language and Environment for Statistical Computing, http://www.R-project.org (R Foundation for Statistical Computing, Vienna, Austria) 2011.
-
R: A Language and Environment For Statistical Computing
-
-
-
33
-
-
11244289128
-
PSOt-A Particle Swarm Optimization Toolbox for use with Matlab
-
April Indianapolis, Indiana, USA
-
Birge B, PSOt-A Particle Swarm Optimization Toolbox for use with Matlab, in IEEE Swarm Intel Symp (Indianapolis, Indiana, USA) 24-26 April 2006.
-
(2006)
IEEE Swarm Intel Symp
, pp. 24-26
-
-
Birge, B.1
-
34
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
Friedman M, The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Amer Statist Assoc 32 (1937) 675-701.
-
(1937)
J Amer Statist Assoc
, vol.32
, pp. 675-701
-
-
Friedman, M.1
|