메뉴 건너뛰기




Volumn 71, Issue 10, 2012, Pages 657-666

Forecasting strong seasonal time series with artificial neural networks

Author keywords

Artificial neural networks; Box jenkins model; Holt winters; Seasonal time series; Support vector machine; Time series forecasting

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; FORECASTING METHOD; GUIDELINE; NUMERICAL MODEL; PERFORMANCE ASSESSMENT; SEASONAL VARIATION; SEASONALITY; TIME SERIES;

EID: 84867668749     PISSN: 00224456     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (18)

References (35)
  • 3
    • 0000557133 scopus 로고
    • Holt-winters forecasting: Some practical issues
    • Chatfield C & Yar M, Holt-winters forecasting: some practical issues, J The Statistician 37 (1988) 129-140.
    • (1988) J the Statistician , vol.37 , pp. 129-140
    • Chatfield, C.1    Yar, M.2
  • 6
    • 79959415599 scopus 로고    scopus 로고
    • Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines
    • Barcelona, Spain, 18-23 July
    • Cortez P, Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines, in Int Joint Conf Neural Netw (Barcelona, Spain) 18-23 July 2010, 1-8.
    • (2010) Int Joint Conf Neural Netw , pp. 1-8
    • Cortez, P.1
  • 7
    • 13844319414 scopus 로고    scopus 로고
    • Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program
    • Miller D M & Williams D, Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program, J Forecasting 20 (2004) 529-549.
    • (2004) J Forecasting , vol.20 , pp. 529-549
    • Miller, D.M.1    Williams, D.2
  • 8
    • 0030560209 scopus 로고    scopus 로고
    • Is seasonal adjustment a linear or nonlinear data filtering process
    • Ghysels E, Granger C W & Siklos P L, Is seasonal adjustment a linear or nonlinear data filtering process, J Bus Econ Statist 14 (1996) 374-386.
    • (1996) J Bus Econ Statist , vol.14 , pp. 374-386
    • Ghysels, E.1    Granger, C.W.2    Siklos, P.L.3
  • 9
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang, G P, Time series forecasting using a hybrid ARIMA and neural network model, J Neurocomputing 50 (2003) 159-175.
    • (2003) J Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 10
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang G, Patuwo B E & Hu M Y, Forecasting with artificial neural networks: The state of the art, J Forecasting 14 (1998) 35-62.
    • (1998) J Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 12
    • 0000860595 scopus 로고    scopus 로고
    • Neural networks models for time series forecasts
    • Hill T, O'Connor M & Remus W, Neural networks models for time series forecasts, J Manage Sci 42 (1996) 1082-1092
    • (1996) J Manage Sci , vol.42 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 13
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang G & Qi M, Neural network forecasting for seasonal and trend time series, Eur J Oper Res 160 (2005) 501-514.
    • (2005) Eur J Oper Res , vol.160 , pp. 501-514
    • Zhang, G.1    Qi, M.2
  • 14
    • 0142239490 scopus 로고    scopus 로고
    • Forecasting Aggregate Retail Sales: A Comparison of Artificial Neural Networks and Traditional Methods
    • Alon I, Qi M & Sadowski R J, Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods, J Retailing and Consumer Services8 (2001) 147-156.
    • (2001) J Retailing and Consumer Services8 , pp. 147-156
    • Alon, I.1    Qi, M.2    Sadowski, R.J.3
  • 15
    • 0036140323 scopus 로고    scopus 로고
    • Combining neural network model with seasonal time series ARIMA model
    • Tseng F M, Yu H C & Tzeng G H, Combining neural network model with seasonal time series ARIMA model, J Technol Forecast Soc Change 69 (2002) 71-87.
    • (2002) J Technol Forecast Soc Change , vol.69 , pp. 71-87
    • Tseng, F.M.1    Yu, H.C.2    Tzeng, G.H.3
  • 17
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao L & Tay E H, Support vector machine with adaptive parameters in financial time series forecasting, J IEEE Trans Neural Netw 14 (2003) 1506-1508.
    • (2003) J IEEE Trans Neural Netw , vol.14 , pp. 1506-1508
    • Cao, L.1    Tay, E.H.2
  • 19
    • 51549113945 scopus 로고    scopus 로고
    • Seasonal time series forecasting: A comparative study of ARIMA and ANN models
    • Kihoro J M, Otieno R O & Wafula C, Seasonal time series forecasting: A comparative study of ARIMA and ANN models, African J Sci and Technol 5 (2004) 41-49.
    • (2004) African J Sci and Technol , vol.5 , pp. 41-49
    • Kihoro, J.M.1    Otieno, R.O.2    Wafula, C.3
  • 20
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway J & Chatfield C, Time series forecasting with neural networks: A comparative study using the airline data, J Appl Statist 47 (1998) 231-250.
    • (1998) J Appl Statist , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 21
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D E, Hinton G E & Williams R J, Learning representations by back-propagating errors, J Nature 323 (1986) 533-536.
    • (1986) J Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan M & Menhaj M, Training feedforward networks with the marquardt algorithm, J IEEE Trans Neural Netw 5 (1994) 989-993.
    • (1994) J IEEE Trans Neural Netw , vol.5 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 23
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The rprop algorithm
    • San Francisco, USA
    • Reidmiller M & Braun H, A direct adaptive method for faster backpropagation learning: The rprop algorithm, in IEEE Int Conf Neural Netw (San Francisco, USA) 1993, 586-591.
    • (1993) IEEE Int Conf Neural Netw , pp. 586-591
    • Reidmiller, M.1    Braun, H.2
  • 24
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M F, A scaled conjugate gradient algorithm for fast supervised learning, J Neural Networks 6 (1993) 525-533.
    • (1993) J Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 25
    • 0001024110 scopus 로고
    • One step secant conjugate gradient
    • Battiti R, One step secant conjugate gradient, J Neural Comput 4 (1992) 141-166.
    • (1992) J Neural Comput , vol.4 , pp. 141-166
    • Battiti, R.1
  • 28
    • 84872173837 scopus 로고    scopus 로고
    • Effectiveness of PSO Based Neural Network for Seasonal Time Series Forecasting
    • (Siddaganga Institute of Technology Tumkur), 14-16 December
    • Adhikari R & Agrawal R K, Effectiveness of PSO Based Neural Network for Seasonal Time Series Forecasting, in Indian Int Conf on Artificial Intel (IICAI) (Siddaganga Institute of Technology Tumkur) 14-16 December 2006, 232-244.
    • (2006) Indian Int Conf On Artificial Intel (IICAI) , pp. 232-244
    • Adhikari, R.1    Agrawal, R.K.2
  • 29
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • Trelea I, The particle swarm optimization algorithm: convergence analysis and parameter selection, J Inf Process Lett 85 (2003) 317-325.
    • (2003) J Inf Process Lett , vol.85 , pp. 317-325
    • Trelea, I.1
  • 31
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team, R: A Language and Environment for Statistical Computing, http://www.R-project.org (R Foundation for Statistical Computing, Vienna, Austria) 2011.
    • R: A Language and Environment For Statistical Computing
  • 33
    • 11244289128 scopus 로고    scopus 로고
    • PSOt-A Particle Swarm Optimization Toolbox for use with Matlab
    • April Indianapolis, Indiana, USA
    • Birge B, PSOt-A Particle Swarm Optimization Toolbox for use with Matlab, in IEEE Swarm Intel Symp (Indianapolis, Indiana, USA) 24-26 April 2006.
    • (2006) IEEE Swarm Intel Symp , pp. 24-26
    • Birge, B.1
  • 34
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M, The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Amer Statist Assoc 32 (1937) 675-701.
    • (1937) J Amer Statist Assoc , vol.32 , pp. 675-701
    • Friedman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.