메뉴 건너뛰기




Volumn 39, Issue 5, 2015, Pages 1-13

Shape and Texture Based Novel Features for Automated Juxtapleural Nodule Detection in Lung CTs

Author keywords

Feature extraction; Image processing; Lung cancer; Machine learning; Pattern recognition

Indexed keywords

ARTICLE; AUTOMATION; CANCER PATIENT; COMPUTER ASSISTED TOMOGRAPHY; EARLY DIAGNOSIS; HUMAN; IMAGE PROCESSING; LUNG CANCER; LUNG NODULE; PLEURA; SURVIVAL RATE; ALGORITHM; AUTOMATED PATTERN RECOGNITION; COMPUTER ASSISTED DIAGNOSIS; CROSS-SECTIONAL STUDY; FEMALE; IMAGE QUALITY; LUNG NEOPLASMS; MALE; PATHOLOGY; PROCEDURES; SENSITIVITY AND SPECIFICITY;

EID: 84924051480     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-015-0231-5     Document Type: Article
Times cited : (56)

References (52)
  • 1
    • 84924069130 scopus 로고    scopus 로고
    • World Health Organization, World Health Report. Accessed 12 Feb 2014, 2004
    • World Health Organization, World Health Report. http://www.who.int/whr/2004/en/. Accessed 12 Feb 2014, 2004.
  • 2
    • 84857048294 scopus 로고    scopus 로고
    • Automated detection of lung nodules in computed tomography images: A review
    • Lee, S. L. A., Kouzani, A. Z., and Hu, E. J., Automated detection of lung nodules in computed tomography images: A review. Mach. Vis. Appl. 23(1):151–163, 2012. doi:10.1007/s00138-010-0271-2.
    • (2012) Mach. Vis. Appl. , vol.23 , Issue.1 , pp. 151-163
    • Lee, S.L.A.1    Kouzani, A.Z.2    Hu, E.J.3
  • 4
    • 84913582161 scopus 로고    scopus 로고
    • Three-dimensional SVM with latent variable: Application for detection of lung lesions in CT images
    • Wang, Q., Zhu, W., and Wang, B., Three-dimensional SVM with latent variable: Application for detection of lung lesions in CT images. J. Med. Syst. 39(1):171, 2015. doi:10.1007/s10916-014-0171-5.
    • (2015) J. Med. Syst. , vol.39 , Issue.1 , pp. 171
    • Wang, Q.1    Zhu, W.2    Wang, B.3
  • 5
    • 84864062567 scopus 로고    scopus 로고
    • A new expert system for diagnosis of lung cancer: GDA—LS_SVM
    • Avci, E., A new expert system for diagnosis of lung cancer: GDA—LS_SVM. J. Med. Syst. 36(3):2005–2009, 2012. doi:10.1007/s10916-011-9660-y.
    • (2012) J. Med. Syst. , vol.36 , Issue.3 , pp. 2005-2009
    • Avci, E.1
  • 7
    • 84924051855 scopus 로고    scopus 로고
    • Cornell University, Public lung database to address drug response. Vision and Image Analysis Group (VIA) and International Early Lung Cancer Action Program (I-ELCAP) Labs., Accessed 18 Feb 2014, 2008
    • Cornell University, Public lung database to address drug response. Vision and Image Analysis Group (VIA) and International Early Lung Cancer Action Program (I-ELCAP) Labs. http://www.via.cornell.edu/crpf.html, Accessed 18 Feb 2014, 2008
  • 10
    • 71049155885 scopus 로고    scopus 로고
    • Supervised “lesion-enhancement” filter by use of a Massive-Training Artificial Neural Network (MTANN) in Computer-Aided Diagnosis (CAD)
    • Suzuki, K., Supervised “lesion-enhancement” filter by use of a Massive-Training Artificial Neural Network (MTANN) in Computer-Aided Diagnosis (CAD). Phys. Med. Biol. 54(18):31–45, 2009.
    • (2009) Phys. Med. Biol. , vol.54 , Issue.18 , pp. 31-45
    • Suzuki, K.1
  • 13
    • 40949105934 scopus 로고    scopus 로고
    • Lung nodule detection in low-dose and thin-slice computed tomography
    • Retico, A., Delogu, P., Fantacci, M. E., Gori, I., and Martinez, A. P., Lung nodule detection in low-dose and thin-slice computed tomography. Comput. Biol. Biomed. 38(4):525–534, 2008.
    • (2008) Comput. Biol. Biomed. , vol.38 , Issue.4 , pp. 525-534
    • Retico, A.1    Delogu, P.2    Fantacci, M.E.3    Gori, I.4    Martinez, A.P.5
  • 14
    • 38149093135 scopus 로고    scopus 로고
    • Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier
    • Li, Q., Li, F., and Doi, K., Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier. Acad. Radiol. 15(2):165–175, 2008.
    • (2008) Acad. Radiol. , vol.15 , Issue.2 , pp. 165-175
    • Li, Q.1    Li, F.2    Doi, K.3
  • 16
    • 0035354205 scopus 로고    scopus 로고
    • Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images
    • Hu, S., Hoffman, E. A., and Reinhardt, J. M., Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20(6):490–498, 2001.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.6 , pp. 490-498
    • Hu, S.1    Hoffman, E.A.2    Reinhardt, J.M.3
  • 17
  • 18
    • 54049155078 scopus 로고    scopus 로고
    • Adaptive border marching algorithm: Automatic lung segmentation on chest CT images
    • Pu, J., Roos, J., Yi, C. A., Napel, S., Rubin, G. D., and Paik, D. S., Adaptive border marching algorithm: Automatic lung segmentation on chest CT images. Comput. Med. Imaging Graph. 32(6):452–462, 2008.
    • (2008) Comput. Med. Imaging Graph. , vol.32 , Issue.6 , pp. 452-462
    • Pu, J.1    Roos, J.2    Yi, C.A.3    Napel, S.4    Rubin, G.D.5    Paik, D.S.6
  • 20
    • 79960845623 scopus 로고    scopus 로고
    • Accelerators, Spectrometers
    • Nunzio, G. De, Massafra, A., Cataldo, R., Mitri I. De, Peccarisi, M., Fantacci, M. E., Gargano, G., Torres, E. L., Approaches to juxta-pleural nodule detection in CT images within the MAGIC-5 Collaboration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 648(1):103–106, 2011.
    • (2011) Detectors and Associated Equipment , vol.648 , Issue.1 , pp. 103-106
  • 21
    • 77955659952 scopus 로고    scopus 로고
    • Random forest based lung nodule classification aided by clustering
    • Lee, S. L. A., Kouzani, A. Z., and Hu, E. J., Random forest based lung nodule classification aided by clustering. Comput. Med. Imaging Graph. 34(7):535–542, 2010.
    • (2010) Comput. Med. Imaging Graph. , vol.34 , Issue.7 , pp. 535-542
    • Lee, S.L.A.1    Kouzani, A.Z.2    Hu, E.J.3
  • 22
    • 0034845242 scopus 로고    scopus 로고
    • Automated detection of lung nodules in CT scans: Preliminary results
    • Armato, S. G., 3rd, Giger, M. L., and MacMahon, H., Automated detection of lung nodules in CT scans: Preliminary results. Med. Phys. 28(8):1552–1561, 2001.
    • (2001) Med. Phys. , vol.28 , Issue.8 , pp. 1552-1561
    • Armato, S.G.1    Giger, M.L.2    MacMahon, H.3
  • 23
    • 0036851688 scopus 로고    scopus 로고
    • Gurcan, M,, Sahiner, B,, Petrick, N,, Chan, H, P., Kazerooni, E. A., Cascade, P. N., Hadjiiski, L., Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med. Phys. 29(11):2552–2558
    • Gurcan, M,, Sahiner, B,, Petrick, N,, Chan, H, P., Kazerooni, E. A., Cascade, P. N., Hadjiiski, L., Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med. Phys. 29(11):2552–2558.
  • 24
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
    • Suzuki, K., Armato, S. G., 3rd, Li, F., Sone, S., and Doi, K., Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med. Phys. 30(7):1602–1617, 2003.
    • (2003) Med. Phys. , vol.30 , Issue.7 , pp. 1602-1617
    • Suzuki, K.1    Armato, S.G.2    Li, F.3    Sone, S.4    Doi, K.5
  • 25
    • 1642580603 scopus 로고    scopus 로고
    • Pulmonary nodules at chest CT: Effect of computer-aided diagnosis on radiologists’ detection performance
    • Awai, K., Murao, K., Ozawa, A., Komi, M., Hayakawa, H., Hori, S., and Nishimura, Y., Pulmonary nodules at chest CT: Effect of computer-aided diagnosis on radiologists’ detection performance. Radiology 230(2):347–352, 2004.
    • (2004) Radiology , vol.230 , Issue.2 , pp. 347-352
    • Awai, K.1    Murao, K.2    Ozawa, A.3    Komi, M.4    Hayakawa, H.5    Hori, S.6    Nishimura, Y.7
  • 26
    • 0035384869 scopus 로고    scopus 로고
    • Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique
    • Lee, Y., Hara, T., Fujita, H., Itoh, S., and Ishigaki, T., Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans. Med. Imaging 20(7):595–604, 2001.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.7 , pp. 595-604
    • Lee, Y.1    Hara, T.2    Fujita, H.3    Itoh, S.4    Ishigaki, T.5
  • 28
    • 23944435413 scopus 로고    scopus 로고
    • Computer-aided detection of lung nodules: False positive reduction using a 3D gradient field method and 3D ellipsoid fitting
    • Ge, Z. Y., Sahiner, B., Chan, H. P., Hadjiiski, L. M., Cascade, P. N., Bogot, N., Kazerooni, E. A., Wei, J., and Zhou, C., Computer-aided detection of lung nodules: False positive reduction using a 3D gradient field method and 3D ellipsoid fitting. Med. Phys. 32(8):2443–2454, 2005.
    • (2005) Med. Phys. , vol.32 , Issue.8 , pp. 2443-2454
    • Ge, Z.Y.1    Sahiner, B.2    Chan, H.P.3    Hadjiiski, L.M.4    Cascade, P.N.5    Bogot, N.6    Kazerooni, E.A.7    Wei, J.8    Zhou, C.9
  • 30
    • 67650862815 scopus 로고    scopus 로고
    • Shape-based computer-aided detection of lung nodules in thoracic CT images
    • Ye, X., Lin, X., Dehmeshki, J., Slabaugh, G., and Beddoe, G., Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans.Biomed. Eng. 56(7):1810–1820, 2009.
    • (2009) IEEE Trans.Biomed. Eng. , vol.56 , Issue.7 , pp. 1810-1820
    • Ye, X.1    Lin, X.2    Dehmeshki, J.3    Slabaugh, G.4    Beddoe, G.5
  • 31
    • 83555177603 scopus 로고    scopus 로고
    • Computer-assisted detection of infectious lung diseases: A review
    • Bağci, U., Bray, M., Caban, J., Yao, J., and Mollura, D. J., Computer-assisted detection of infectious lung diseases: A review. Comput. Med. Imaging Graph. 36(1):72–84, 2012.
    • (2012) Comput. Med. Imaging Graph. , vol.36 , Issue.1 , pp. 72-84
    • Bağci, U.1    Bray, M.2    Caban, J.3    Yao, J.4    Mollura, D.J.5
  • 32
    • 84887826679 scopus 로고    scopus 로고
    • Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor
    • Choi, W. J., and Choi, T. S., Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Comput. Methods Prog. Biomed. 113(1):37–54, 2014.
    • (2014) Comput. Methods Prog. Biomed. , vol.113 , Issue.1 , pp. 37-54
    • Choi, W.J.1    Choi, T.S.2
  • 33
    • 77950459958 scopus 로고    scopus 로고
    • Computerized lung nodule detection using 3D feature extraction and learning based algorithms
    • Ozekes, S., and Osman, O., Computerized lung nodule detection using 3D feature extraction and learning based algorithms. J. Med. Syst. 34(2):185–194, 2010. doi:10.1007/s10916-008-9230-0.
    • (2010) J. Med. Syst. , vol.34 , Issue.2 , pp. 185-194
    • Ozekes, S.1    Osman, O.2
  • 34
    • 84887825143 scopus 로고    scopus 로고
    • Lung cancer classification using neural networks for CT images
    • Kuruvilla, J., and Gunavathi, K., Lung cancer classification using neural networks for CT images. Comput. Methods Prog. Biomed. 113(1):202–209, 2014.
    • (2014) Comput. Methods Prog. Biomed. , vol.113 , Issue.1 , pp. 202-209
    • Kuruvilla, J.1    Gunavathi, K.2
  • 35
    • 84863210448 scopus 로고    scopus 로고
    • A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines
    • Daliri, M. R., A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines. J. Med. Syst. 36(2):1001–1005, 2012. doi:10.1007/s10916-011-9806-y.
    • (2012) J. Med. Syst. , vol.36 , Issue.2 , pp. 1001-1005
    • Daliri, M.R.1
  • 36
    • 84924081789 scopus 로고    scopus 로고
    • Cancer Imaging Archive (2014) LIDC-IDRI. Accessed 9 Oct 2014
    • Cancer Imaging Archive (2014) LIDC-IDRI. https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI. Accessed 9 Oct 2014.
  • 37
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu, N., A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1):62–66, 1979.
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 38
    • 84924037245 scopus 로고    scopus 로고
    • Lundrgen J. Alpha Shapes. Accessed 12 Feb 2014, 2010
    • Lundrgen J. Alpha Shapes http://www.mathworks.com/matlabcentral/fileexchange/28851-alpha-shapes/content/alphavol.m. Accessed 12 Feb 2014, 2010
  • 39
    • 78751504156 scopus 로고    scopus 로고
    • survey of shape feature extraction techniques. Pattern Recognition Techniques
    • Mingqiang, Y., Kidiyo, K., Joseph, R. A survey of shape feature extraction techniques. Pattern Recognition Techniques, Technology and Applications 43–90, 2008
    • (2008) Technology and Applications , pp. 43-90
    • Mingqiang, Y.1    Kidiyo, K.2    Joseph, R.A.3
  • 40
    • 84924047928 scopus 로고    scopus 로고
    • Math Works Inc, Matlab R2011a documentation. Accessed 12 Feb 2014, 2014
    • Math Works Inc, Matlab R2011a documentation. http://www.mathworks.com/help/index.html. Accessed 12 Feb 2014, 2014
  • 43
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A., The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2):179–188, 1936. doi:10.1111/j.1469-1809.1936.tb02137.x.
    • (1936) Ann. Eugen. , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 44
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Cover, T. M., Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. EC-14(3):326–334, 1965. doi:10.1109/pgec.1965.264137.
    • (1965) IEEE Trans. Electron. Comput. , vol.EC-14 , Issue.3 , pp. 326-334
    • Cover, T.M.1
  • 45
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T. M., and Hart, P. E., Nearest neighbor pattern classification. IEEE Trans. Inf. Theory IT-13(1):21–27, 1967. doi:10.1109/TIT.1967.1053964.
    • (1967) IEEE Trans. Inf. Theory , vol.IT-13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 46
    • 84924072138 scopus 로고    scopus 로고
    • Rumelhart D. E., Geoffrey, E. H., Williams, R. J., Learning internal representations by error propagation. Parallel distributed processing: explorations in the microstructure of cognition 1:318–362. MIT Press, Cambridge, 1986
    • Rumelhart D. E., Geoffrey, E. H., Williams, R. J., Learning internal representations by error propagation. Parallel distributed processing: explorations in the microstructure of cognition 1:318–362. MIT Press, Cambridge, 1986
  • 47
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D. F., Probabilistic neural networks. Neural Netw. 3(1):109–118, 1990. doi:10.1016/0893-6080(90)90049-Q.
    • (1990) Neural Netw. , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 52
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24(3):123–140, 1996. doi:10.1023/A:1018054314350.
    • (1996) Mach. Learn. , vol.24 , Issue.3 , pp. 123-140
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.