-
1
-
-
34248545094
-
Principles component analysis, fuzzy weighting pre-processing and artificial immune recognition system based diagnostic system for diagnosis of lung cancer
-
DOI 10.1016/j.eswa.2006.09.001, PII S0957417406002703
-
Polat, K., Gunes S., Principles component analysis, fuzzy weighting pre-processing and artificial immune recognition system based diagnostic system for diagnosis of lung cancer. Expert Syst. Appl. 34(1): 214-221, 2008. (Pubitemid 46756251)
-
(2008)
Expert Systems with Applications
, vol.34
, Issue.1
, pp. 214-221
-
-
Polat, K.1
Gunes, S.2
-
2
-
-
84864038994
-
-
(last accessed: 07 April 2006)
-
http://www.cdc.gov/lungcancer/basic-info/index.htm (last accessed: 07 April 2006).
-
-
-
-
3
-
-
84864055068
-
-
(last accessed: 05 March 2006)
-
ftp://ftp.ics.uci.edu/pub/machine-learning-databases (last accessed: 05 March 2006).
-
-
-
-
4
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
Baudat, G, Anouar, F. E., Generalized discriminant analysis using a kernel approach. Neural Comput. 12 (10): 2385-2404, 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.10
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.E.2
-
5
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J. A. K., Vandewalle, J., Least squares support vector machine classifiers. Neural Process. Lett., 9(3):293-300, 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
6
-
-
33750051338
-
A decision support system based on support vector machines for diagnosis of the heart valve diseases
-
DOI 10.1016/j.compbiomed.2005.11.002, PII S0010482505001484
-
Çomak,E., Arslan, A., Turkoglu, I., A decision support system based on support vector machines for diagnosis of the heart valve diseases. Comput. Biol. Med. 37(1): 21-27, 2007. (Pubitemid 44584252)
-
(2007)
Computers in Biology and Medicine
, vol.37
, Issue.1
, pp. 21-27
-
-
Comak, E.1
Arslan, A.2
Turkoglu, I.3
-
7
-
-
14944382803
-
Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds
-
DOI 10.1002/cem.877
-
Fernández Pierna,J. A., Baeten, V., Michotte Renier, A., Cogdill, R. P., Dardenne, P., Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. J. Chemom. 18(7-8): 341-349, 2004. (Pubitemid 40362141)
-
(2004)
Journal of Chemometrics
, vol.18
, Issue.7-8
, pp. 341-349
-
-
Fernandez Pierna, J.A.1
Baeten, V.2
Renier, A.M.3
Cogdill, R.P.4
Dardenne, P.5
-
8
-
-
84944073718
-
Comparative exudate classification using support vector machines and neural networks
-
Dohi, T., and Kikinis, R. (Eds.), Berlin: Springer
-
Osareh,A., Mirmehdi, M., Thomas, B., Markham, R., Comparative exudate classification using support vector machines and neural networks. In: Dohi, T., and Kikinis, R. (Eds.), Fifth international conference on medical image computing and computer-assisted intervention, lecture notes in computer science, vol. 2489. Berlin: Springer, 413-420, 2002.
-
(2002)
Fifth International Conference on Medical Image Computing and Computer-assisted Intervention, Lecture Notes in Computer Science
, vol.2489
, pp. 413-420
-
-
Osareh, A.1
Mirmehdi, M.2
Thomas, B.3
Markham, R.4
-
9
-
-
82055176907
-
-
AVBPA 2001, LNCS 2091
-
Yao, Y., Frasconi, P., Pontil, M., Fingerprint classification with combinations of support vector machines, AVBPA 2001, LNCS 2091, 253-258, 2001.
-
(2001)
Fingerprint Classification with Combinations of Support Vector Machines
, pp. 253-258
-
-
Yao, Y.1
Frasconi, P.2
Pontil, M.3
-
11
-
-
33747881516
-
Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition
-
DOI 10.1016/j.engappai.2005.12.006, PII S0952197606000352, Special Section on Innovative Production Machines and Systems
-
Frias-Martinez,E., Sanchez, A., Velez, J., Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition. Eng. Appl. Artif. Intell. 19(6): 693-704, 2006. (Pubitemid 44292511)
-
(2006)
Engineering Applications of Artificial Intelligence
, vol.19
, Issue.6
, pp. 693-704
-
-
Frias-Martinez, E.1
Sanchez, A.2
Velez, J.3
-
12
-
-
0003425664
-
-
University of Southampton, UK, Available on, [Accessed on 30 March 2006]
-
Gunn, S R., Support vector machines for classification and regression. technical report, image speech and intelligent systems research group, University of Southampton, UK, 1998. Available on http://www.ecs.soton.ac.uk/ ~srg/publications/pdf/SVM.pdf [Accessed on 30 March 2006].
-
(1998)
Support Vector Machines for Classification and Regression. Technical Report, Image Speech and Intelligent Systems Research Group
-
-
Gunn, S.R.1
-
13
-
-
37349023712
-
Error correcting codes with optimized kullback-leibler distances for text categorization
-
Principles of Data Mining and Knowledge Discovery
-
Kindermann, J., Paass, G., Leopold, E., Error correcting codes with optimized Kullback-Leibler distances for text categorization, PKDD 2001. 266-276, 2001. (Pubitemid 33331867)
-
(2001)
Lecture Notes in Computer Science
, Issue.2168
, pp. 266-276
-
-
Kindermann, J.1
Paass, G.2
Leopold, E.3
-
14
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C., A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 2(2): 121-167,1998. (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
15
-
-
84864061188
-
Support vector machines: A versatile and powerful approach to data analysis
-
Williamstown, MA, Available on, [Accessed on 28 March 2006]
-
Belousov, A. I., Verzakov, S. A., von Frese, J., Support vector machines: A versatile and powerful approach to data analysis, Poster at the Gordon Conf. on Statistics and Chemical Engineering, Williamstown, MA, 2001. Available on http://www.amstat.org./sections/spes/GRC2001.htm [Accessed on 28 March 2006].
-
(2001)
Poster at the Gordon Conf. on Statistics and Chemical Engineering
-
-
Belousov, A.I.1
Verzakov, S.A.2
Von Frese, J.3
-
16
-
-
21644461711
-
Digital modulation recognition using support vector machine classifier
-
Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers
-
Mustafa, H., Doroslovaki, M., Digital modulation recognition using support vector machine classifier, signals, systems and computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference. 2:2238-2242, 2004. (Pubitemid 40930533)
-
(2004)
Conference Record - Asilomar Conference on Signals, Systems and Computers
, vol.2
, pp. 2238-2242
-
-
Mustafa, H.1
Doroslovacki, M.2
-
17
-
-
37349051158
-
A novel approach for digital radio signal classification: Wavelet packet energy-multiclass support vector machine (WPE-MSVM)
-
DOI 10.1016/j.eswa.2007.02.019, PII S0957417407000929
-
Avci, E., Avci, D., A novel approach for digital radio signal classification: Wavelet packet energy-multiclass support vector machine (WPE-MSVM). Expert Syst. Appl., 34(3): 2140-2147, (2008). (Pubitemid 350298234)
-
(2008)
Expert Systems with Applications
, vol.34
, Issue.3
, pp. 2140-2147
-
-
Avci, E.1
Avci, D.2
-
18
-
-
25144489652
-
-
Springer-Verlag
-
Avci, E., Turkoglu I., Poyraz, M., Intelligent target recognition based on wavelet adaptive network based fuzzy inference system, lecture notes in computer science, Springer-Verlag. 3522: 594-601, 2005.
-
(2005)
Intelligent Target Recognition Based on Wavelet Adaptive Network Based Fuzzy Inference System, Lecture Notes in Computer Science
, vol.3522
, pp. 594-601
-
-
Avci, E.1
Turkoglu, I.2
Poyraz, M.3
-
19
-
-
16244372741
-
Intelligent target recognition based on wavelet packet neural network
-
DOI 10.1016/j.eswa.2005.01.016, PII S0957417405000175
-
Avci,E., Turkoglu, I., Poyraz, M., Intelligent target recognition based on wavelet packet neural network. Experts Systems with Applications.29(1): 175-182, 2005. (Pubitemid 40454403)
-
(2005)
Expert Systems with Applications
, vol.29
, Issue.1
, pp. 175-182
-
-
Avci, E.1
Turkoglu, I.2
Poyraz, M.3
|