메뉴 건너뛰기




Volumn 113, Issue 1, 2014, Pages 202-209

Lung cancer classification using neural networks for CT images

Author keywords

Computed tomography; Kurtosis; Neural network; Skewness

Indexed keywords

BACK PROPAGATION NEURAL NETWORKS; CLASSIFICATION ACCURACY; COMPUTER AIDED CLASSIFICATION; FEED-FORWARD BACK PROPAGATION NETWORKS; FEED-FORWARD BACK-PROPAGATION NEURAL NETWORKS; KURTOSIS; MINIMUM MEAN SQUARE ERRORS; SKEWNESS;

EID: 84887825143     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2013.10.011     Document Type: Article
Times cited : (350)

References (24)
  • 1
    • 0035467993 scopus 로고    scopus 로고
    • Global cancer statistics in the year 2000
    • Parkin D.M. Global cancer statistics in the year 2000. Lancet Oncology 2001, 2:533-543.
    • (2001) Lancet Oncology , vol.2 , pp. 533-543
    • Parkin, D.M.1
  • 2
    • 0036124721 scopus 로고    scopus 로고
    • Prognosis of non-surgically treated, clinical stage I lung cancer patients in Japan
    • Motohiro A., Ueda H., Komatsu H., Yanai N., Mori T. Prognosis of non-surgically treated, clinical stage I lung cancer patients in Japan. Lung Cancer 2002, 36:65-69.
    • (2002) Lung Cancer , vol.36 , pp. 65-69
    • Motohiro, A.1    Ueda, H.2    Komatsu, H.3    Yanai, N.4    Mori, T.5
  • 3
    • 0028499937 scopus 로고
    • Tumor detection in non stationary backgrounds
    • Strickland R.N. Tumor detection in non stationary backgrounds. IEEE Transactions on Medical Imaging 1994, 13(June):491-499.
    • (1994) IEEE Transactions on Medical Imaging , vol.13 , Issue.JUNE , pp. 491-499
    • Strickland, R.N.1
  • 4
    • 0029546663 scopus 로고
    • Artificial convolution neural network techniques and applications for lung nodule detection
    • Lo S.B., Lou S.L., Lin J.S., Freedman M.T., Mun S.K. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Transactions on Medical Imaging 1995, 14(August):711-718.
    • (1995) IEEE Transactions on Medical Imaging , vol.14 , Issue.AUGUST , pp. 711-718
    • Lo, S.B.1    Lou, S.L.2    Lin, J.S.3    Freedman, M.T.4    Mun, S.K.5
  • 6
    • 84882980586 scopus 로고    scopus 로고
    • Lung cancer cell classification method using artificial neural network
    • Abdulla A.A., Shaharum S.M. Lung cancer cell classification method using artificial neural network. Information Engineering Letters 2012, 2(March):50-58.
    • (2012) Information Engineering Letters , vol.2 , Issue.MARCH , pp. 50-58
    • Abdulla, A.A.1    Shaharum, S.M.2
  • 7
    • 84862988310 scopus 로고    scopus 로고
    • Combination of computer-aided detection algorithms for automatic lung nodule identification
    • Camarlinghi N., et al. Combination of computer-aided detection algorithms for automatic lung nodule identification. International Journal of Computer Assisted Radiology and Surgery 2012, 7:455-464.
    • (2012) International Journal of Computer Assisted Radiology and Surgery , vol.7 , pp. 455-464
    • Camarlinghi, N.1
  • 8
    • 45749094210 scopus 로고    scopus 로고
    • Texture analysis of aggressive and non aggressive lung tumor CE CT images
    • Al-Kadi O.S., Watson D. Texture analysis of aggressive and non aggressive lung tumor CE CT images. IEEE Transactions on Biomedical Engineering 2008, 55:1822-1830.
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , pp. 1822-1830
    • Al-Kadi, O.S.1    Watson, D.2
  • 9
    • 77954657504 scopus 로고    scopus 로고
    • Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study
    • van Ginneken B., et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Medical Image Analysis 2010, 14:707-722.
    • (2010) Medical Image Analysis , vol.14 , pp. 707-722
    • van Ginneken, B.1
  • 10
    • 36649028681 scopus 로고    scopus 로고
    • A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model
    • Bellotti R., Cascio D., et al. A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model. International Journal of Medical Physics Research and Practice 2007, 34:4901-4911.
    • (2007) International Journal of Medical Physics Research and Practice , vol.34 , pp. 4901-4911
    • Bellotti, R.1    Cascio, D.2
  • 11
    • 0141954913 scopus 로고    scopus 로고
    • Three dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images
    • Kostis W.J., Reeves A.P., Yankelevitz D.F., Henschke C.I. Three dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Transactions on Medical Imaging 2003, 22:1259-1274.
    • (2003) IEEE Transactions on Medical Imaging , vol.22 , pp. 1259-1274
    • Kostis, W.J.1    Reeves, A.P.2    Yankelevitz, D.F.3    Henschke, C.I.4
  • 12
    • 84887816417 scopus 로고    scopus 로고
    • Digital Image Processing, 3ed ed., Pearson Prentice Hall
    • R.C. Gonzalez, R.E. Wood, Digital Image Processing, 3ed ed., Pearson Prentice Hall, 2008.
    • (2008)
    • Gonzalez, R.C.1    Wood, R.E.2
  • 13
    • 84887823612 scopus 로고    scopus 로고
    • Geometrical and texture feature estimation of lung cancer and TB image using chest X-ray database
    • Patil S.A., Udupi V.R., Kane C.D., Wasif A.I., Desai J.V., Jadhav A.N. Geometrical and texture feature estimation of lung cancer and TB image using chest X-ray database. IEEE 2009.
    • (2009) IEEE
    • Patil, S.A.1    Udupi, V.R.2    Kane, C.D.3    Wasif, A.I.4    Desai, J.V.5    Jadhav, A.N.6
  • 14
    • 0032216601 scopus 로고    scopus 로고
    • Computer-aided diagnosis a neural-network-based approach to lung nodule detection
    • Penedo M.G., Carreira M.J., Mosquera A. Computer-aided diagnosis a neural-network-based approach to lung nodule detection. IEEE Transactions On Medical Imaging 1998, 17:872-880.
    • (1998) IEEE Transactions On Medical Imaging , vol.17 , pp. 872-880
    • Penedo, M.G.1    Carreira, M.J.2    Mosquera, A.3
  • 15
    • 84887819316 scopus 로고    scopus 로고
    • Introduction to Neural Networks Using Matlab, Tata McGraw Hill Publishing Company Limited
    • S.N. Sivanandan, S. Sumathi, S.N. Deepa, Introduction to Neural Networks Using Matlab, Tata McGraw Hill Publishing Company Limited, 2006.
    • (2006)
    • Sivanandan, S.N.1    Sumathi, S.2    Deepa, S.N.3
  • 16
    • 84863876081 scopus 로고    scopus 로고
    • Back propagation neural network by comparing hidden neurons: case study on breast cancer diagnosis
    • Paulin F., Santhakumaran A. Back propagation neural network by comparing hidden neurons: case study on breast cancer diagnosis. International Journal of Computer Applications 2010, 2(June):40-44.
    • (2010) International Journal of Computer Applications , vol.2 , Issue.JUNE , pp. 40-44
    • Paulin, F.1    Santhakumaran, A.2
  • 17
    • 49449117609 scopus 로고    scopus 로고
    • Fault classification in phase-locked loops using back propagation neural networks
    • Ramesh J., Gunavathi K., et al. Fault classification in phase-locked loops using back propagation neural networks. ETRI, Journal 2008, 30(August (4)):546-554.
    • (2008) ETRI, Journal , vol.30 , Issue.4 AUGUST , pp. 546-554
    • Ramesh, J.1    Gunavathi, K.2
  • 20
    • 0026882084 scopus 로고
    • Conjugate gradient algorithm for efficient training of artificial neural networks
    • Charalambous C. Conjugate gradient algorithm for efficient training of artificial neural networks. IEEE Proceedings 1992, 139(3):301-310.
    • (1992) IEEE Proceedings , vol.139 , Issue.3 , pp. 301-310
    • Charalambous, C.1
  • 21
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993, 6:525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 22
    • 0001024110 scopus 로고
    • First and second order methods for learning: Between steepest descent and Newton's method
    • Battiti R. First and second order methods for learning: Between steepest descent and Newton's method. Neural Computation 1992, 4(2):141-166.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 141-166
    • Battiti, R.1
  • 23
    • 0028543366 scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M. Training feed-forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 1994, 5(6):989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 24
    • 33846085516 scopus 로고    scopus 로고
    • Back propagation algorithms for a broad class of dynamic networks
    • De Jesús O., Hagan M.T. Back propagation algorithms for a broad class of dynamic networks. IEEE Transactions on Neural Networks 2007, 18(January (1)):14-27.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 JANUARY , pp. 14-27
    • De Jesús, O.1    Hagan, M.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.