메뉴 건너뛰기




Volumn 54, Issue 18, 2009, Pages

A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD)

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE AREA; ARTIFICIAL NEURAL NETWORK; CONVENTIONAL FILTERS; CT IMAGE; DETECTION OF LUNG NODULES; FALSE POSITIVE; FILTER-BASED; GROUND-GLASS OPACITY; HESSIAN MATRICES; INHOMOGENEITIES; LUNG CANCER; LUNG NODULE; MEDICAL IMAGE ANALYSIS; SENSITIVITY AND SPECIFICITY; SIMPLE MODEL; SOLID SPHERES; TRUE POSITIVE;

EID: 71049155885     PISSN: 00319155     EISSN: 13616560     Source Type: Journal    
DOI: 10.1088/0031-9155/54/18/S03     Document Type: Article
Times cited : (61)

References (41)
  • 1
    • 0035999397 scopus 로고    scopus 로고
    • Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images
    • Aoyama M et al 2002 Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images Med. Phys. 29 701-8
    • (2002) Med. Phys. , vol.29 , Issue.5 , pp. 701-708
    • Aoyama, M.1
  • 2
    • 2542474244 scopus 로고    scopus 로고
    • Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening
    • Arimura H et al 2004 Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening Acad. Radiol. 11 617-29
    • (2004) Acad. Radiol. , vol.11 , Issue.6 , pp. 617-629
    • Arimura, H.1
  • 3
    • 0033190949 scopus 로고    scopus 로고
    • Computerized detection of pulmonary nodules on CT scans
    • Armato S G III et al 1999 Computerized detection of pulmonary nodules on CT scans Radiographics 19 1303-11
    • (1999) Radiographics , vol.19 , pp. 1303-1311
    • Armato, S.G.1
  • 4
    • 0034845242 scopus 로고    scopus 로고
    • Automated detection of lung nodules in CT scans: Preliminary results
    • Armato S G III et al 2001 Automated detection of lung nodules in CT scans: preliminary results Med. Phys. 28 1552-61
    • (2001) Med. Phys. , vol.28 , Issue.8 , pp. 1552-1561
    • Armato, S.G.1
  • 5
    • 0036891913 scopus 로고    scopus 로고
    • Lung cancer: Performance of automated lung nodule detection applied to cancers missed in a CT screening program
    • Armato S G III et al 2002 Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program Radiology 225 685-92
    • (2002) Radiology , vol.225 , Issue.3 , pp. 685-692
    • Armato, S.G.1
  • 6
    • 60649113163 scopus 로고    scopus 로고
    • Automatic detection of pulmonary nodules in multi-slice CT: Performance of 3D morphologic matching algorithm
    • Bae K T et al 2002 Automatic detection of pulmonary nodules in multi-slice CT: performance of 3D morphologic matching algorithm Radiology 225(P) 476
    • (2002) Radiology , vol.225 , pp. 476
    • Bae, K.T.1
  • 7
    • 0023501052 scopus 로고
    • Image feature analysis and computer-aided diagnosis in digital radiography: I. Automated detection of microcalcifications in mammography
    • Chan H P et al 1987 Image feature analysis and computer-aided diagnosis in digital radiography: I. Automated detection of microcalcifications in mammography Med. Phys. 14 538-48
    • (1987) Med. Phys. , vol.14 , Issue.4 , pp. 538-548
    • Chan, H.P.1
  • 8
    • 33747130105 scopus 로고    scopus 로고
    • Improved cancer detection using computer-aided detection with diagnostic and screening mammography: Prospective study of 104 cancers
    • Dean J C and Ilvento C C 2006 Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers AJR Am. J. Roentgenol. 187 20-8
    • (2006) AJR Am. J. Roentgenol. , vol.187 , Issue.1 , pp. 20-28
    • Dean, J.C.1    Ilvento, C.C.2
  • 9
    • 27744601340 scopus 로고    scopus 로고
    • Robustness of computerized lesion detection and classification scheme across different breast US platforms
    • Drukker K et al 2005 Robustness of computerized lesion detection and classification scheme across different breast US platforms Radiology 237 834-40
    • (2005) Radiology , vol.237 , Issue.3 , pp. 834-840
    • Drukker, K.1
  • 10
    • 12244309097 scopus 로고    scopus 로고
    • Maximum likelihood fitting of FROC curves under an initial-detection-and- candidate-analysis model
    • Edwards D C et al 2002 Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model Med. Phys. 29 2861-70
    • (2002) Med. Phys. , vol.29 , Issue.12 , pp. 2861-2870
    • Edwards, D.C.1
  • 11
    • 0001639877 scopus 로고
    • Operating characteristics, signal detectability, and the method of free response
    • Egan J P et al 1961 Operating characteristics, signal detectability, and the method of free response J. Acoust. Soc. Am. 33 993-1007
    • (1961) J. Acoust. Soc. Am. , vol.33 , Issue.8 , pp. 993-1007
    • Egan, J.P.1
  • 12
    • 0033201371 scopus 로고    scopus 로고
    • Model-based quantitation of 3-D magnetic resonance angiographic images
    • Frangi A F et al 1999 Model-based quantitation of 3-D magnetic resonance angiographic images IEEE Trans. Med. Imaging 18 946-56
    • (1999) IEEE Trans. Med. Imaging , vol.18 , Issue.10 , pp. 946-956
    • Frangi, A.F.1
  • 13
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K 1989 On the approximate realization of continuous mappings by neural networks Neural Netw. 2 183-92
    • (1989) Neural Netw. , vol.2 , Issue.3 , pp. 183-192
    • Funahashi, K.1
  • 14
    • 0023890921 scopus 로고
    • Image feature analysis and computer-aided diagnosis in digital radiography 3. Automated detection of nodules in peripheral lung fields
    • Giger M L et al 1988 Image feature analysis and computer-aided diagnosis in digital radiography 3. Automated detection of nodules in peripheral lung fields Med. Phys. 15 158-66
    • (1988) Med. Phys. , vol.15 , Issue.2 , pp. 158-166
    • Giger, M.L.1
  • 16
    • 0031657391 scopus 로고    scopus 로고
    • Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging
    • Gilhuijs K G et al 1998 Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging Med. Phys. 25 1647-54
    • (1998) Med. Phys. , vol.25 , Issue.9 , pp. 1647-1654
    • Gilhuijs, K.G.1
  • 17
    • 57049182423 scopus 로고
    • The rolling ball
    • Hanson A J 1992 The rolling ball Graphics Gems III (Cambridge, MA: Academic) pp 51-60
    • (1992) Graphics Gems III , pp. 51-60
    • Hanson, A.J.1
  • 18
    • 1442330150 scopus 로고    scopus 로고
    • Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography
    • Horsch K et al 2004 Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography Acad. Radiol. 11 272-80
    • (2004) Acad. Radiol. , vol.11 , Issue.3 , pp. 272-280
    • Horsch, K.1
  • 19
    • 16544368188 scopus 로고    scopus 로고
    • Radiologists' performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy
    • Li F et al 2004 Radiologists' performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy AJRAm. J. Roentgenol. 183 1209-15
    • (2004) AJRAm. J. Roentgenol. , vol.183 , pp. 1209-1215
    • Li, F.1
  • 20
    • 27144509110 scopus 로고    scopus 로고
    • Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization
    • Li F et al 2005 Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization Radiology 237 684-90
    • (2005) Radiology , vol.237 , Issue.2 , pp. 684-690
    • Li, F.1
  • 21
    • 0036892529 scopus 로고    scopus 로고
    • Lung cancers missed at low-dose helical CT screening in a general population: Comparison of clinical, histopathologic, and imaging findings
    • Li F et al 2002 Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings Radiology 225 673-83
    • (2002) Radiology , vol.225 , Issue.3 , pp. 673-683
    • Li, F.1
  • 22
    • 63249127404 scopus 로고    scopus 로고
    • Comparison of 2D and 3D views for measurement and conspicuity of flat lesions in CT colonography
    • Lostumbo A et al 2007 Comparison of 2D and 3D views for measurement and conspicuity of flat lesions in CT colonography Proc. Int. Symp. on Virtual Colonoscopy (ISVC) (Boston, MA)
    • (2007) Proc. Int. Symp. on Virtual Colonoscopy (ISVC)
    • Lostumbo, A.1
  • 24
    • 0018306059 scopus 로고
    • A threshold selection method from gray level histograms
    • Otsu N 1979 A threshold selection method from gray level histograms IEEE Trans. Syst. Man Cybern. 9 62-6
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 25
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D E et al 1986 Learning representations by back-propagating errors Nature 323 533-6
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1
  • 26
    • 19044380982 scopus 로고    scopus 로고
    • Determining the receptive field of a neural filter
    • Suzuki K 2004 Determining the receptive field of a neural filter J. Neural Eng. 1 228-37
    • (2004) J. Neural Eng. , vol.1 , Issue.4 , pp. 228-237
    • Suzuki, K.1
  • 27
    • 33645673568 scopus 로고    scopus 로고
    • Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN)
    • Suzuki K et al 2006a Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN) IEEE Trans. Med. Imaging 25 406-16
    • (2006) IEEE Trans. Med. Imaging , vol.25 , Issue.4 , pp. 406-416
    • Suzuki, K.1
  • 28
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT
    • Suzuki K et al 2003a Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT Med. Phys. 30 1602-17
    • (2003) Med. Phys. , vol.30 , Issue.7 , pp. 1602-1617
    • Suzuki, K.1
  • 29
    • 25144467873 scopus 로고    scopus 로고
    • How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?
    • Suzuki K and Doi K 2005 How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad. Radiol. 12 1333-41
    • (2005) Acad. Radiol. , vol.12 , Issue.10 , pp. 1333-1341
    • Suzuki, K.1    Doi, K.2
  • 30
    • 0035251045 scopus 로고    scopus 로고
    • A simple neural network pruning algorithm with application to filter synthesis
    • Suzuki K et al 2001 A simple neural network pruning algorithm with application to filter synthesis Neural Process. Lett. 13 43-53
    • (2001) Neural Process. Lett. , vol.13 , Issue.1 , pp. 43-53
    • Suzuki, K.1
  • 31
    • 0036647658 scopus 로고    scopus 로고
    • Efficient approximation of neural filters for removing quantum noise from images
    • Suzuki K et al 2002 Efficient approximation of neural filters for removing quantum noise from images IEEE Trans. Signal Process. 50 1787-99
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.7 , pp. 1787-1799
    • Suzuki, K.1
  • 32
    • 0348011365 scopus 로고    scopus 로고
    • Neural edge enhancer for supervised edge enhancement from noisy images
    • Suzuki K et al 2003b Neural edge enhancer for supervised edge enhancement from noisy images IEEE Trans. Pattern Anal. Mach. Intell. 25 1582-96
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.12 , pp. 1582-1596
    • Suzuki, K.1
  • 33
    • 1642411032 scopus 로고    scopus 로고
    • Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector
    • Suzuki K et al 2004 Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector IEEE Trans. Med. Imaging 23 330-9
    • (2004) IEEE Trans. Med. Imaging , vol.23 , Issue.3 , pp. 330-339
    • Suzuki, K.1
  • 34
    • 25144514408 scopus 로고    scopus 로고
    • Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
    • DOI 10.1109/TMI.2005.852048
    • Suzuki K et al 2005a Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network IEEE Trans. Med. Imaging 24 1138-50 (Pubitemid 41337154)
    • (2005) IEEE Transactions on Medical Imaging , vol.24 , Issue.9 , pp. 1138-1150
    • Suzuki, K.1    Li, F.2    Sone, S.3    Doi, K.4
  • 35
    • 77958039125 scopus 로고    scopus 로고
    • Supervised enhancement of lesions by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD)
    • Suzuki K et al 2008a Supervised enhancement of lesions by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD) Proc. Int. Conf. Pattern Recognition (ICPR) (Tampa, FL)
    • (2008) Proc. Int. Conf. Pattern Recognition (ICPR)
    • Suzuki, K.1
  • 36
    • 13944267171 scopus 로고    scopus 로고
    • False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network
    • DOI 10.1016/j.acra.2004.11.017
    • Suzuki K et al 2005b False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network Acad. Radiol. 12 191-201 (Pubitemid 40269219)
    • (2005) Academic Radiology , vol.12 , Issue.2 , pp. 191-201
    • Suzuki, K.1    Shiraishi, J.2    Abe, H.3    MacMahon, H.4    Doi, K.5
  • 37
    • 33749391616 scopus 로고    scopus 로고
    • Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes
    • Suzuki K et al 2006b Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: suppression of rectal tubes Med. Phys. 33 3814-24
    • (2006) Med. Phys. , vol.33 , Issue.10 , pp. 3814-3824
    • Suzuki, K.1
  • 38
    • 38849178080 scopus 로고    scopus 로고
    • Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography
    • Suzuki K et al 2008b Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography Med. Phys. 35 694-703
    • (2008) Med. Phys. , vol.35 , Issue.2 , pp. 694-703
    • Suzuki, K.1
  • 39
    • 0035544606 scopus 로고    scopus 로고
    • Computer-aided diagnosis in chest radiography: A survey
    • van Ginneken B et al 2001 Computer-aided diagnosis in chest radiography: a survey IEEE Trans. Med. Imaging 20 1228-41
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.12 , pp. 1228-1241
    • Van Ginneken, B.1
  • 40
    • 0030867439 scopus 로고    scopus 로고
    • Development of an improved CAD scheme for automated detection of lung nodules in digital chest images
    • Xu X W et al 1997 Development of an improved CAD scheme for automated detection of lung nodules in digital chest images Med. Phys. 24 1395-403
    • (1997) Med. Phys. , vol.24 , Issue.9 , pp. 1395-1403
    • Xu, X.W.1
  • 41
    • 0035544612 scopus 로고    scopus 로고
    • Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps
    • Yoshida H and Nappi J 2001 Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps IEEE Trans. Med. Imaging 20 1261-74
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.12 , pp. 1261-1274
    • Yoshida, H.1    Nappi, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.