메뉴 건너뛰기




Volumn 113, Issue 1, 2014, Pages 37-54

Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor

Author keywords

CAD; CT; Feature extraction; Pulmonary nodule detection

Indexed keywords

COMPUTER-AIDED DETECTION; DOT ENHANCEMENTS; ELIMINATION METHOD; FALSE POSITIVE; FEATURE DESCRIPTORS; IMAGE DATABASE; PULMONARY NODULE DETECTION; PULMONARY NODULES; THREE-DIMENSIONAL SHAPE;

EID: 84887826679     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2013.08.015     Document Type: Article
Times cited : (192)

References (48)
  • 4
    • 2942577813 scopus 로고    scopus 로고
    • Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT
    • Paik D., Beaulieu C., Rubin G., Acar B., Jeffrey R., Yee J., Dey J., Napel S. Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT. IEEE Transactions on Medical Imaging 2004, 23:661-675.
    • (2004) IEEE Transactions on Medical Imaging , vol.23 , pp. 661-675
    • Paik, D.1    Beaulieu, C.2    Rubin, G.3    Acar, B.4    Jeffrey, R.5    Yee, J.6    Dey, J.7    Napel, S.8
  • 12
    • 77951647196 scopus 로고    scopus 로고
    • A new computationally efficient CAD system for pulmonary nodule detection in CT imagery
    • Messay T., Hardie R., Rogers S. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Medical Image Analysis 2010, 14:390-406.
    • (2010) Medical Image Analysis , vol.14 , pp. 390-406
    • Messay, T.1    Hardie, R.2    Rogers, S.3
  • 14
    • 84863006941 scopus 로고    scopus 로고
    • Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images
    • Choi W.-J., Choi T.-S. Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Information Sciences 2012, 212:57-78.
    • (2012) Information Sciences , vol.212 , pp. 57-78
    • Choi, W.-J.1    Choi, T.-S.2
  • 15
    • 33751367333 scopus 로고    scopus 로고
    • Automatic lung nodule detection using template matching
    • Ozekes S., Camurcu A. Automatic lung nodule detection using template matching. Lecture Notes in Computer Science 2006, 4243:247.
    • (2006) Lecture Notes in Computer Science , vol.4243 , pp. 247
    • Ozekes, S.1    Camurcu, A.2
  • 16
    • 48349084576 scopus 로고    scopus 로고
    • Accuracy improvement of pulmonary nodule detection based on spatial statistical analysis of thoracic CT scans
    • Takizawa H., Yamamoto S., Shiina T. Accuracy improvement of pulmonary nodule detection based on spatial statistical analysis of thoracic CT scans. IEICE Transactions on Information and Systems 2007, 90:1168-1174.
    • (2007) IEICE Transactions on Information and Systems , vol.90 , pp. 1168-1174
    • Takizawa, H.1    Yamamoto, S.2    Shiina, T.3
  • 18
    • 0035384869 scopus 로고    scopus 로고
    • Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique
    • Lee Y., Hara T., Fujita H., Itoh S., Ishigaki T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Transactions on Medical Imaging 2001, 20:595-604.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , pp. 595-604
    • Lee, Y.1    Hara, T.2    Fujita, H.3    Itoh, S.4    Ishigaki, T.5
  • 22
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
    • Suzuki K., Armato S.G., Li F., Sone S., Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Medical Physics 2003, 30:1602-1617.
    • (2003) Medical Physics , vol.30 , pp. 1602-1617
    • Suzuki, K.1    Armato, S.G.2    Li, F.3    Sone, S.4    Doi, K.5
  • 23
    • 78449233034 scopus 로고    scopus 로고
    • Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models
    • Kubota T., Jerebko A., Dewan M., Salganicoff M., Krishnan A. Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Medical Image Analysis 2011, 15:133-154.
    • (2011) Medical Image Analysis , vol.15 , pp. 133-154
    • Kubota, T.1    Jerebko, A.2    Dewan, M.3    Salganicoff, M.4    Krishnan, A.5
  • 24
    • 79953648703 scopus 로고    scopus 로고
    • Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification
    • Riccardi A., Petkov T., Ferri G., Masotti M., Campanini R. Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Medical Physics 2011, 38:1962-1971.
    • (2011) Medical Physics , vol.38 , pp. 1962-1971
    • Riccardi, A.1    Petkov, T.2    Ferri, G.3    Masotti, M.4    Campanini, R.5
  • 25
    • 84867731465 scopus 로고    scopus 로고
    • Automatic detection of lung nodules in CT datasets based on stable 3D mass-pring models
    • Cascio D., Magro R., Fauci F., Iacomi M., Raso G. Automatic detection of lung nodules in CT datasets based on stable 3D mass-pring models. Computers in Biology and Medicine 2012, 42:1098-1109.
    • (2012) Computers in Biology and Medicine , vol.42 , pp. 1098-1109
    • Cascio, D.1    Magro, R.2    Fauci, F.3    Iacomi, M.4    Raso, G.5
  • 26
    • 84874760366 scopus 로고    scopus 로고
    • Automated pulmonary nodule detection system in computed tomography images: a hierarchical block classification approach
    • Choi W.-J., Choi T.-S. Automated pulmonary nodule detection system in computed tomography images: a hierarchical block classification approach. Entropy 2013, 15:507-523.
    • (2013) Entropy , vol.15 , pp. 507-523
    • Choi, W.-J.1    Choi, T.-S.2
  • 27
    • 77955659952 scopus 로고    scopus 로고
    • Random forest based lung nodule classification aided by clustering
    • Lee S., Kouzani A., Hu E. Random forest based lung nodule classification aided by clustering. Computerized Medical Imaging and Graphics 2010, 34:535-542.
    • (2010) Computerized Medical Imaging and Graphics , vol.34 , pp. 535-542
    • Lee, S.1    Kouzani, A.2    Hu, E.3
  • 31
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2004, 60:91-110.
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.1
  • 38
    • 0035354205 scopus 로고    scopus 로고
    • Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images
    • Hu S., Hoffman E., Reinhardt J. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Transactions on Medical Imaging 2001, 20:490-498.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , pp. 490-498
    • Hu, S.1    Hoffman, E.2    Reinhardt, J.3
  • 39
    • 0041387385 scopus 로고    scopus 로고
    • Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans
    • Li Q., Sone S., Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Medical Physics 2003, 30:2040-2051.
    • (2003) Medical Physics , vol.30 , pp. 2040-2051
    • Li, Q.1    Sone, S.2    Doi, K.3
  • 42
    • 84867404131 scopus 로고    scopus 로고
    • Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA)
    • Sartakhti J.S., Zangooei M.H., Mozafari K. Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA). Computer Methods and Programs in Biomedicine 2012, 108:570-579.
    • (2012) Computer Methods and Programs in Biomedicine , vol.108 , pp. 570-579
    • Sartakhti, J.S.1    Zangooei, M.H.2    Mozafari, K.3
  • 43
    • 84880035900 scopus 로고    scopus 로고
    • Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set
    • Sun T., Wang J., Li X., Lv P., Liu F., Luo Y., Gao Q., Zhu H., Guo X. Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set. Computer Methods and Programs in Biomedicine 2013, 111:519-524.
    • (2013) Computer Methods and Programs in Biomedicine , vol.111 , pp. 519-524
    • Sun, T.1    Wang, J.2    Li, X.3    Lv, P.4    Liu, F.5    Luo, Y.6    Gao, Q.7    Zhu, H.8    Guo, X.9
  • 44
    • 84880042135 scopus 로고    scopus 로고
    • The application of support vector regression for prediction of the antiallodynic effect of drug combinations in the mouse model of streptozocin-induced diabetic neuropathy
    • Sałat R., Sałat K. The application of support vector regression for prediction of the antiallodynic effect of drug combinations in the mouse model of streptozocin-induced diabetic neuropathy. Computer Methods and Programs in Biomedicine 2013, 111:330-337.
    • (2013) Computer Methods and Programs in Biomedicine , vol.111 , pp. 330-337
    • Sałat, R.1    Sałat, K.2
  • 46
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets J. Measuring the accuracy of diagnostic systems. Science 1988, 240:1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.1
  • 48
    • 0024462154 scopus 로고
    • Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data
    • Chakraborty D.P. Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data. Medical Physics 1989, 16:561-568.
    • (1989) Medical Physics , vol.16 , pp. 561-568
    • Chakraborty, D.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.